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ABSTRACT

Microblog content poses serious challenges to the applicabil-
ity of traditional sentiment analysis and classification meth-
ods, due to its inherent characteristics. To tackle them, we
introduce a method that relies on two orthogonal, but com-
plementary sources of evidence: content-based features cap-
tured by n-gram graphs and context-based ones captured by
polarity ratio. Both are language-neutral and noise-tolerant,
guaranteeing high effectiveness and robustness in the set-
tings we are considering. To ensure our approach can be
integrated into practical applications with large volumes of
data, we also aim at enhancing its time efficiency: we pro-
pose alternative sets of features with low extraction cost, ex-
plore dimensionality reduction and discretization techniques
and experiment with multiple classification algorithms. We
then evaluate our methods over a large, real-world data set
extracted from Twitter, with the outcomes indicating sig-
nificant improvements over the traditional techniques.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering
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1. INTRODUCTION

The advent of the Web 2.0 and Social Media platforms
led to an unprecedented increase in the volume of the user-
generated content that is available on the Web [24]. One of
the most popular services is microblogging, with Twitter?
constituting the most successful application of this kind: it
encompasses around 180 million users that post more than
1 billion messages per week?. A large portion of this con-
tent - if not its majority - is subjective, containing opinions
and sentiments on various topics of interest [21]. Thus it in-
cludes valuable information for a number of tasks that range

"http://twitter.com
2http://blog.kissmetrics.com/twitter-statistics/
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from product marketing to politics and policy making. To
leverage this bulk of subjective information, automatic tech-
niques are required for processing it; this need recently gave
rise to Sentiment Analysis (SA), also known as Opinion
Mining in the IR community [30]. The popularity of this
field is reflected in the high number of on-line services of-
fering sentiment extraction from Twitter messages, such as
Twendz® and TweetFeel.

Existing SA systems typically aim at extracting sentiment-
expressive textual patterns from unstructured documents.
To this end, they employ either discriminative (series of)
words [5] or dictionaries that assess the meaning and the
lexical category of specific words and phrases (e.g., Sen-
tiWordNet®) [14, 21, 31]. Although these approaches are
sufficiently effective in the context of specific settings (e.g.,
large curated documents), they are built on the assump-
tion that the input documents are written in the particular
language their methods are crafted for, not including noisy
content and misspelled words. However, these fundamen-
tal assumptions are broken by the inherent characteristics
of microblog content, which call for a language-agnostic SA
approach that is tolerant to high levels of noise:

(i) Sparsity. Microblog posts solely comprise free-form text
that is rather short in length (e.g., maximum 140 characters
in Twitter). Due to their limited size, they typically consist
of a few words, thus involving little extra information that
can be used as evidence for identifying their polarity.

(ii) Non-standard vocabulary. Microblog posts are informal,
as they are mainly exchanged between fellows who indulge in
using slang words and non-standard expressions (e.g., “koo”
instead of “cool”) [6]. Also, the limited size of messages
urges authors to shorten words into new forms that bear
little similarity to the original one. For instance, “great” is
replaced by “gr8” and “congratulations” by “congratz”.

(iii) Noise. The real-time nature of microblogging encour-
ages users to post their messages without verifying their cor-
rectness with respect to grammar or syntactic rules. In case
a message (or part of it) is incomprehensible, the author
can simply replace it with a new one. As a result, the user-
generated, microblog content abounds in misspelled words
and incorrect phrases, thus entailing high levels of noise.

(iv) Multilinguality. Although the majority of users stems
from English-speaking countries, microblogging platforms
are popular world-wide [13]; their user base encompasses

3http://twendz.waggeneredstrom. com
‘http://www.tweetfeel . com
Shttp://sentiwordnet.isti.cnr.it



people talking in various languages and dialects, thus ren-
dering inapplicable the language-specific SA methods.

In this paper, we introduce a novel approach for SA that
relies on two orthogonal, yet complementary sources of evi-
dence, both being language-neutral and robust to noise. The
first one extracts reliable content-based features using the
n-gram graphs document representation model. The second
one considers the contextual information of individual mes-
sages in order to infer their sentiment without considering
their content. It relies on social graph connections to cap-
ture the general mood expressed in the social context of each
message: its author, her friends as well as the users closer to
her (i.e., those friends that share higher levels of homophily
with her). It also considers the general mood related to
the resources contained in each message: its topic(s), the
users it mentions as well as the media items it points to,
information that is excluded from the content features. We
thus compare between two distinct sources of evidence and
analytically examine how they perform in conjunction.

In addition to effectiveness, we also pay attention to im-
proving efficiency. We actually aim at identifying those clas-
sification settings that offer the best balance between effec-
tiveness and efficiency. To this end, we investigate four pos-
sibilities: first, we propose alternative features with low ex-
traction cost for both sources of evidence. Second, we exper-
iment with attribute filtering approaches in order to reduce
the feature space to its minimal subset that maintains the
original levels of accuracy at a significantly lower processing
time. Third, we propose discretization techniques that turn
our numeric features into nominal ones, which involve higher
classification efficiency [16]. Last but not least, we examine
several classification algorithms of varying time complexity.
We analytically examine the actual performance of all these
classification settings, applying them on a large-scale, real-
world data set of Twitter data.

On the whole, the main contributions of our paper can be
summarized as follows:

e We distinguish between two orthogonal, yet complemen-
tary categories of SA features: the content-based and
context-based ones. The former detects novel textual
patterns in microblog messages, while the latter encap-
sulate the aggregate polarity of their social context.

e We examine the n-gram graphs performance in the con-
text of SA over microblog content. We explain how their
features can be discretized and compare their numeric
and their nominal form with the traditional representa-
tion models. We also compare it with the alternative of
exclusively considering specific punctuation features.

e We introduce Polarity Ratio as a novel metric encapsu-
lating the aggregate sentiment of a document collection
and explain how it can form the basis for context-based
features. We apply it on several aspects of a document’s
social context and present an approach for discretizing
its value. Also, we compare it with the efficient alterna-
tive of considering several direct contextual features.

e We apply our features to several state-of-the-art classi-
fication algorithms and evaluate their performance over
a large, real-world data collection comprising 3 million
Twitter messages.

The rest of the paper is structured as follows: Section 2
formally defines the problem we are tackling, while Section 3
presents the main characteristics of Twitter. We present
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our approach in Section 4 and in Section 5 we evaluate its
performance over a thorough experimental study. Related
work is discussed in Section 6, followed by our conclusions
and future directions in Section 7.

2. PROBLEM FORMULATION

Sentiment Analysis is distinguished in three tasks [18]:

(i) Document-level SA assumes each document to express a
single opinion about a particular topic or object,

(ii) Sentence-level SA splits each document into sentences,
hypothesizing that they express individual opinions, and

(iii) Feature-level SA splits each document and sentence into
polarized phrases that correspond to a particular feature of
the discussed object or topic.

In this work, we exclusively focus on document-level SA
in the context of microblog posts. In particular, we aim at
detecting the polarity of individual Twitter messages, which
typically consist of few sentences. Given their limited length,
though, the problem we are tackling is very close to the
Sentence-level SA, as well.

In practice, the task of document-level SA is typically cast
as a binary classification problem, where the goal is to iden-
tify whether a document expresses a negative or a positive
opinion [18]. Formally, it is defined as follows:

Problem 1 (BINARY POLARITY CLASSIFICATION).
Given a collection of documents D and the set of binary
polarization classes P = {negative, positive}, the goal is
to approximate the unknown target function ®p : D — Pg,
which describes the documents’ polarization according to a
golden standard, by means of a function ®g : T — Pg that
is called the binary polarity classifier.

This formulation simplifies the task of SA, as it is based
on the assumption that each document is subjective (i.e., it
expresses a single, polarized opinion). In practice, however,
a document can be neutral, as well, containing objective
(i.e., factual) information. For this reason, we additionally
consider the following, more general problem of document-
level SA:

Problem 2 (GENERAL POLARITY CLASSIFICATION).
Given a collection of documents D and the set of all polariza-
tion classes Pg = {negative, neutral, positive}, the goal is
to approximate the unknown target function ®g : D — Pg,
which describes the polarization of documents according to a
golden standard, by means of a function ®g : T — Pg that
is called the general polarity classifier.

Note that both problems are modeled as single-label clas-
sification tasks (i.e., each document belongs to a single po-
larity class). Note also that some works address them in a
slightly different manner [18]: given a set of documents, its
elements are first categorized into a binary scale of objective
(i.e., neutral) and subjective (i.e., polarized) ones; in a sec-
ond stage, they further categorize the subjective documents
into negative and positive ones. In this work, we consider
the multiclass version of Problem 2 so as to compare its
performance with that of Problem 1 on an equal basis (i.e.,
applying both of them on the same data). In this way, we
provide a holistic overview of SA in real settings, and ana-
lytically examine the effect of extending Problem 1 with the
class of objective documents.

3. PRELIMINARIES

Among all microblogging platforms, we selected Twitter
for developing and testing our approach, due to the following
advantages it conveys:



(i) Strict interaction. Twitter defines a single, strict way of
interaction, allowing users to post only short messages of up
to 140 characters - called tweets. To draw the attention of
other users, tweets typically contain original, self-contained
content that requires the minimum attention from readers.
Thus, user sentiments are exclusively encapsulated in tweets,
unlike other platforms that offer diverse ways for expressing
them (e.g., the “Like” and the “+1” buttons in Facebook®
and Google+", respectively).

(ii) Social graph. The morphology of Twitter’s social graph
captures the relationships between its users in an unequivo-
cal way. More specifically, users can register to any account
that is of particular interest to them in order to receive noti-
fication for its latest posts; the subscriber is called follower,
the content provider is the followee, and their connection is
modeled by a directed edge that points from the former to
the latter. This allows for a particular category of interper-
sonal connections, namely the reciprocal friends; these are
followers that are followed back by their followees, thus in-
dicating a particularly close relationship between them (i.e.,
each one finds the other of particular interest). Their strong
connection is typically interpreted as a sign of high levels
of homophily, in the sense that they share a highly similar
background, such as common age, sex or education [32].

(iii) Public content. The vast majority of Twitter’s content
is public and accessible, enabling us to harvest an adequate
volume of content for experimentation.

(iv) Timed activity. Tweets are timestamped, thus indi-
cating their sequence of appearance. As we explain below,
this is critical for deriving past contextual evidence from the
activity relevant to individual tweets.

In the following, we analyze the intrinsic characteristics of
Twitter that lie at the core of our methods:

(i) Hashtags. Users typically categorize their tweets in top-
ics that can be freely defined by any user. This is simply
done by adding a topic tag - called hashtag - usually at the
end of the tweet. To distinguish it from the rest of the mes-
sage, a hashtag starts with the symbol #, which is then fol-
lowed by one or more concatenated words or alphanumerics
(e.g., #1b). This notation enables the efficient and effective
identification of tweets pertaining to a specific topic (i.e.,
topic tweets). Note, though, that a single tweet can be
associated with multiple hashtags.

(ii) Mentions. Twitter often serves as a platform for dis-
cussions among its members (i.e., chat). To facilitate this
functionality, a user can address another person simply by
adding a mention to her username. This is a special nota-
tion formed by concatenating the symbol @ at the beginning
of the corresponding username (e.g., @erwtokritos). In this
way, it is easy to identify and aggregate all the tweets per-
taining to a particular user (i.e., mention tweets).

(iii) Eaxternal Pointers. A common practice in Twitter is to
inform one’s followers about interesting Web resources (e.g.,
on-line videos), by posting the corresponding link. Given
that URLs spread unchanged even among users that speak
different languages, it is easy to track the messages pertain-
ing to a specific resource (i.e., URL tweets).

(iv) Emoticons. Subjective tweets usually denote the opin-
ion of their author with the help of standard “smileys”: posi-

Shttp://www.facebook.com/
"http://plus.google.com
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tive sentiments are usually marked with one of the following

annotationsz 44:)777 44(:777 u:_)>77 44(_:777 u: )777 u( :777 “ID” or 4:2)777
whereas the negative ones are typically annotated by the
following emoticons: “:(”, “):”, “-(7, “)-, “ (? or ) :” [1, 5,

22]. We call positive tweets the messages annotated with
at least one from the former group of emoticons, and neg-
ative tweets those annotated with at least one from the
latter [1, 5, 22]; messages that belong to either of these cat-
egories are collectively called polarized tweets. Neutral
tweets, on the other hand, are those lacking any polarity
indicators. Tweets containing both positive and negative
emoticons are entirely excluded from our analysis; the rea-
son is that they are not suitable for the task of single-label,
document-level SA we are considering, but rather for the
feature-level one, which is out of the scope of this work.

(v) Retweets. Users typically share with their followers in-
teresting tweets that have been posted by other users. To
distinguish these messages from their own tweets, they mark
them as retweets, adding the special annotation “RT QX"
usually at their beginning. In this way, they give credit to
the original author (i.e., the user X) and enable us to dis-
tinguish genuine tweets from the reproduced ones.

Of the above features, the first four offer valuable con-
textual information for individual tweets. Retweets are ex-
cluded from our analysis, as they do not provide any novel
information.

4. APPROACH

In this section, we elaborate on the main techniques that
provide the textual and contextual features of our approach.
We accompany them with discretization techniques for en-
hancing their efficiency and consider alternative sets of fea-
tures with a lower extraction cost, as well.

4.1 Content-based Models

Textual patterns are typically captured through language-
specific representation models that detect frequent sequences
of words (i.e., word n-grams) [5]. The settings we are consid-
ering in this work, however, pose significant obstacles to the
applicability of term-based techniques, urging us to consider
character-based models instead. Several reasons advocate
this choice: first, character n-grams have been verified to
outperform word n-grams in various applications, ranging
from spam filtering [15] to authorship attribution [7] and
utterance recognition [33]. Second, there is no standard
tokenization approach for multilingual documents; words
are typically identified through the whitespace that delimit
them, but there are languages, such as Chinese, where dif-
ferent words can be concatenated in a single token.

Most importantly, though, term-based models depend on
dictionary-based and language-specific techniques, such as
stemming and lemmatization, to tackle synonymy; that is,
words with the same meaning, but different syntactic form
(e.g., quickly and rapidly), which are considered as distinct
features, unless sophisticated methods for matching them
are employed. Such techniques are inapplicable to the user-
generated, multilingual microblog content, whose inherent
noise (i.e., spelling mistakes) and neologisms further aggra-
vate synonymy. As a result, both the effectiveness and the
efficiency of term-based models is significantly degraded in
our settings; the former is restricted due to missed pat-
terns, stemming from semantically equivalent features that
are treated as different, whereas the latter suffers from the
curse of dimensionality; the diversity of the vocabulary leads



to a feature space with excessively high complexity and high
computational cost.

For these reasons, we focus in the following on character-
based representation models, namely the character n-grams
and the character n-gram graphs. We also consider the term
vector model - free from any optimizations - in order to
illustrate the shortcomings of language-dependent methods
in our settings. For each model, we explain how it represents
individual tweets as well as a collection of tweets sharing the
same polarity.

4.1.1 Term Vector Model

Given a collection of tweets T, this model aggregates the
set of distinct words (i.e., tokens) W that are contained
in it. Each tweet t; € T is then represented as a vec-
tor vz, = (v1,v2,...,v)w|) of size |W|, whose j-th dimen-
sion v; corresponds to the TF-IDF weight of the j-th token
w; € W; that is, its value is defined as the product of its
Term Frequency TF; (i.e., the number of times w; occurs
in ¢;) and its Inverse Document Frequency IDF; (i.e., the
cross-document frequency of w;) [19]. The latter is defined
as DF; =log |T|/|{t : ws € t At € T}|, where the numerator
stands for the size of the input tweets collection, and the de-
nominator expresses the number of tweets that contain the
word w;. Similar to individual tweets, each polarity class T},
is modeled as a term vector T, that comprises all tokens of
the tweets ¢; corresponding to it (i.e., ¢; € Tp).

4.1.2 Character N-grams Model

The set of character n-grams of a tweet comprises all sub-
strings of length n of its text. The most common sizes for n
are 2 (bigrams), 3 (trigrams) and 4 (four-grams). For exam-
ple, the trigrams representation of the phrase “home_phone”
is the following: { hom, ome, me_, _ph, pho, hon, one }.
According to this model, each tweet t; is represented by a
vector vy, whose i-th dimension corresponds to the Term
Frequency of the i-th n-gram [19]. Similarly, a polarity class
T}, is modeled as a vector vr, that comprises all the n-grams
contained in its tweets.

The main advantages of this model over the previous one
are its language neutrality and its tolerance to noise and
spelling mistakes: by considering substrings instead of entire
words, their impact on the identified patterns is significantly
reduced.

4.1.3 Character N-gram Graphs Model

The main drawback of the previous model is that it con-
verts a tweet into a bag of n-grams, thus disregarding the
valuable information that is encapsulated in the sequence of
the n-grams of the original text. To overcome this problem,
the character n-gram graphs method associates all neighbor-
ing character n-grams with edges that denote their (average)
co-occurrence rate inside an individual tweet or a collection
of tweets [9]. That is, it forms a graph whose nodes cor-
respond to distinct n-grams, while its edges are weighted
proportionally to the average distance - in terms of n-grams
- between the adjacent nodes. To illustrate this structure,
Figure 1 depicts the n-gram graph derived from the phrase
“home_phone”. Apparently, it conveys more information
than the trigram representation of the same phrase in Sec-
tion 4.1.2.

Formally, a character n-gram graph is defined as [9]:

Definition 1  (N-GRAM GRAPH). An n-gram graph is
a graph G = {VE EC W}, where VC is the set of vertices
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Figure 1: An example of a tri-gram graph that rep-
resents the phrase “home_phone”.

(labeled by the corresponding character n-gram), E€ s the
set of undirected edges (labeled by the concatenation of the
labels of their adjacent vertices in alphabetical order), and
W is a function assigning a weight to every edge.

According to this model, each tweet t; is represented by a
character n-gram graph Gy, - called tweet graph - that is
constructed by running a window of size n over it. During
this process, the tweet is analyzed into overlapping character
n-grams, recording information about the neighboring ones
(i.e., those placed within the same window). Thus, an edge
et € E connecting a pair of n-grams indicates proxim-
ity of these character sequences in the original text within
the predefined window of size n [9]. The actual weight of
the edges is estimated by measuring the percentage of co-
occurrences of the corresponding vertices n-grams within the
specified window.

A polarity class T}, is modeled by a single graph G,
that uniformly represents the tweets comprising it. This
class graph is formed with the help of the update func-
tionality [10]%: given a set of tweets of the same polarity
Ty, it builds an initially empty graph Gr,. The i-th tweet
t; € Tp is transformed into the tweet graph G, that is
then merged with Gr, to form a new graph G. consist-
ing of the union of the nodes and edges of the individual
graphs; their weights are set equal to the average value of
the weights of the individual graphs. More formally, G,
has the following properties: G, = (E*,V* W"), where
E" = ECT» U EC% | V* = V9 U VE and WY (e)
WETs (&) + (WSt (e) — WTr (e)) x 1/i. Note that the divi-
sion by i ensures that the aggregated weight converges to the
mean value of the corresponding edge among all individual
tweet graphs, thus turning the update functionality inde-
pendent of the order by which tweets are merged [10]. After
merging all individual tweet graphs into the class graph G'r,,

its edges ECTp encapsulate the most characteristic patterns
contained in the class’ content, such as recurring and neigh-
boring character sequences, special characters, and digits.

To estimate the similarity between a tweet graph G, and
a class graph G, we employ one of the established n-gram
graph similarity metrics [9]:

8An alternative approach would simply extract the class
graph from the single tweet formed by the concatenation
of all individual tweets. This practice, though, inserts noise
in the form of edges between the last and the first n-gram
of two consecutive, but actually independent tweets. In this
way, it also depends on the order of concatenation.



(i) Containment Similarity (CS), which expresses the pro-
portion of edges of graph Gy, that are shared with graph
Grt,. Assuming that G is an n-gram graph, e is an n-gram
graph edge and that for the function (e, G) it stands that
u(e,G) =1, if and only if e € G, and 0 otherwise, then:

CS(Ge;,Gr,) = Y ple,Gr,)/min(|Gy, |, |G, |),

ecGy,

where |G| denotes theesi;e of the n-gram graph G (i.e., the
number of edges it contains).

(ii) Value Similarity (VS), which indicates how many of
the edges contained in graph Gy, are shared with graph
Gr,, considering also their weights. In more detail, every
common edge e having weights w'i(e) and w’?(e) in Gy,
and G, , respectively, contributes VR (e)/max(|Gy,|,|Gr,|)
to the VS, where the ValueRatio (VR) is a symmetric, scal-

ing factor that is defined as: VR(e) = min(w'i (e),w P (e))

max(wti (e),w?P (e))
takes values in the interval [0, 1], with non-matching edges
having no contribution to it (i.e., for an edge e ¢ Gy, we
have VR(e) = 0). The full equation for VS now is:

min(w' (e),w?? (¢))
ZeEGgi max(wti (e),wT? (e))

max(|Gti|, |GTp|)

This measure converges to 1 for graphs that share both the
edges and weights, with a value of VS = 1 indicating perfect
match between the compared graphs.

(iii) Normalized Value Similarity (NVS), which decouples
value similarity from the effect of the largest graph’s size. Its
value is derived from the combination of VS with SS (i.e.,
the size similarity of two graphs) as follows:

NVS(G¢,,Gr,) = VS(Gy,,Gt,)/SS(Gt;, Gr,),

where SS(Gy,., Gr,) = min(|Gh, |, |G, |) /max(|Gr |, |Gy ).

On the whole, the n-gram graphs representation model
captures the common textual patterns between a tweet ¢;
and a polarity class T, through their CS, VS and the NVS
similarities. These measures are substantially different from
the cosine similarity of the n-grams model: the latter oper-
ates on the level of individual n-grams, whereas CS consid-
ers pairs of neighboring n-grams. VS goes one step further
considering pairs of neighboring n-grams that have the same
co-occurrence rate (i.e., edge weight), while NVS further en-
hances this approach by removing the effect of the relative
size of the compared graphs.

The exact process for classifying a tweet t; with the help
of the n-gram graphs in the case of Problem 2 is presented
in Figure 2: the tweet graph Gy, is compared with each class
graph (i.e., G1,.,, GT,cr GTy,.) tO estimate its closeness to
the corresponding polarity class. This is encapsulated in the
values of three similarity metrics per class (i.e., CS, NVS and
VS), which collectively form the feature vector that is given
as input to a trained classifier. Based on the 9 - in total -
features, the classifier decides for the most likely class label
of tweet t;. The same process is followed in case of Prob-
lem 1 with the only difference that there is no comparison
with the neutral class graph Gr,., (i.e., the feature vector
comprises just 6 features). This makes clear that the feature
space of the n-gram graphs model depends on the number of
considered classes and does not suffer from the dimension-
ality curse of the aforementioned representation models; the
number of features the latter entail depends on the diversity
of the vocabulary of the input document collection, typically
amounting to several thousands of them (see Section 5 for
more details).

VS(G,,Gr,) =
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Figure 2: Deriving the feature vector from the n-
gram graphs model for Problem 2.

Discretized N-Gram Graph Model. To enhance the
classification efficiency of the n-gram graphs model, we pro-
pose an intuitive method for discretizing its similarity values.
It employs pair-wise comparisons between the values of the
same metric for different polarity classes, producing a nom-
inal label according to the following discretization function:

pola,  if simpor; < SiMpoiy
dsim(siMmpot, , SiMpol, ) = {  equal, if siMpor;, = SiMypol,
poly, if simpor; < siMpols,,

where sim is the similarity metric (i.e., sim € {CS,V S, or
NV S}) and poli and pols are the involved polarity classes
(i.e., poly, pola € {neg, neu, pos}).

Thus, a tweet is classified in the Binary Polarity Prob-
lem according to 3 nominal features: dsim(CSneg, CSpos),
dsim(NV Speg, NV Spos), and dsim(V Speg, V Spos). In the
case of Problem 2, the following 6 additional features are de-
rived from the comparisons of the neutral class similarities
with the corresponding ones of the negative and the pos-
itive class: dsim(CSneg, CSnew), dsim(NV Speg, NV Sneu),
dsim(V Sneg, VSneu), dsim(CSnew, CSpos), dsim(NV Speu,
NV Sp0s), and dsim(V Snew, V Spos).

4.1.4 Punctuation Model

An alternative, language-agnostic method for detecting
textual patterns has been proposed in [5]. It exclusively
takes into account the punctuation and special characters
that are contained in a tweet, thus being robust to spelling
mistakes and neologisms. Its main advantage, though, is its
minimal cost for extracting its features: they can be derived
from a simple inspection of the characters of individual mes-
sages. In the following, we present its features, illustrating
the rationale behind them through their average value for
each polarity class, as it was estimated over the data set of
3 million tweets (1 million of randomly selected tweets per
class) that is presented in Section 5.

(i) Number of Special Characters. It denotes the number
of characters in a tweet that are neither alphanumerics nor
white space. The higher their number is, the more likely is
the corresponding message to be subjective. For example, it
is common to add punctuation characters to stress a feeling
and to replace abusive words with a series of incomprehen-
sible symbols. Indeed, neutral tweets contain - on average
- just 6.05 characters of this kind, whereas the positive and
negative ones contain 6.44 and 7.76 characters, respectively.
(ii) Number of “I”. Exclamation marks constitute a typical
annotation for positive sentiments; the higher their num-
ber is, the more intense the positive feeling of a message
is. Thus, positive messages contain 0.65 such characters on
average, whereas the negative and the neutral ones contain
0.40 and 0.45 exclamation marks, respectively.



(iii) Number of Quotes. Quoted sentences are more likely
to be found in objective tweets, whose authors cite other
people’s statements. Indeed, neutral messages contain 0.15
quotes on average, whereas subjective ones contain almost
half as much: 0.08 for negative and 0.09 for positive tweets.

(iv) Number of “?”. The higher the number of question
marks in a message is, the more likely it is to be subjective,
usually expressing a negative feeling. On average, tweets of
this polarity contain 0.19 question marks in comparison to
0.16 and 0.14 for positive and neutral ones, respectively.

(v) Number of Capitalized Tokens. With the exception of
abbreviations, capitalized tokens offer a strong indication for
subjectivity; the higher their number is, the more intense
the expressed feeling is. On average, negative and positive
tweets contain 2.31 and 2.17 capitalized tokens, respectively,
whereas objective tweets involve just 1.58 tokens of this kind.

(vi) Tweet Length in Characters. Negative tweets were
found to consist - on average - of 95.05 characters, thus be-
ing larger than those of the other two polarity classes. They
are followed by the the neutral ones that comprise 90.64
characters and the positive ones with just 88.92 characters.

4.2 Context-based Models

In addition to the textual patterns, another reliable source
of evidence for detecting a tweet’s sentiment is its social
context. As such, we define any indication that associates
it - directly or indirectly - with other messages (i.e., hashtags
and URLSs) or with members of the underlying social network
(i.e., the author of the message, her friends as well as the
users mentioned in it). In a similar vein to the spread of
happiness that was suggested in [4], we argue that the overall
polarity of the associated entities is critical for the polarity of
individual messages; for example, the more positive tweets a
user’s friends have posted in the past, the more likely is her
next tweet to be positive, as well. Note that this idea lies at
the core of [27], as well, but it is employed in the context of
user-level sentiment analysis (i.e., identifying the sentiment
of a specific user with respect to a particular topic).

To quantify the effect of social context, we introduce a
metric that estimates the aggregate sentiment of a set of
tweets: the Polarity Ratio. We explain how it can be applied
to the social context of individual tweets and present an in-
tuitive way of discretizing its values. To verify its utility, we
also examine an alternative approach of minimal extraction
cost that relies on the raw form of the same contextual fea-
tures (i.e., without taking the Polarity Ratio into account).

4.2.1 Social Polarity Model

The aggregate sentiment of a set of tweets is determined
by the dominant polarity class: if the positive messages sig-
nificantly outnumber the negative ones, the overall senti-
ment is considered positive and vice versa. This notion can
be quantified through the following measure:

Definition 2  (POLARITY RATIO). Given a collection
of tweets T, their polarity ratio rp,(T) is defined as follows:

|PT|+1
INT|+1

—1, i |NT|<|PT|
rp(T)
INT|+1

~ +1, if|PT|<|NT| ’
where NT C T and PT C T stand for the sets of negative

tweets and positive tweets, respectively, with |NT| and |PT)|
representing their cardinality.

Polarity Ratio (PR) is defined in the interval (—oo, +00),
with positive values suggesting the prevalence of positive
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tweets, and vice versa. More specifically, a positive value n
suggests that the positive tweets are n + 1 times more than
the negative ones. Values very close to 0 corresponds to
neutral aggregate polarity, denoting the absence of polarized
tweets or the relatively equal portion of positive and negative
tweets (i.e., NT ~ PT).

PR can be applied to all components of a tweet’s social
context, provided that they are represented by the set of
messages pertaining to them. For example, the polarity ratio
of the author’s friends is calculated from the entire set of
polarized messages they have already posted. Note that a
critical point in this procedure is the temporal aspect of the
tweets: we can only consider all the messages posted before
the message in question. This is because we can only employ
evidence from a tweet’s past in order to predict its polarity.

In this work, we consider the following features:

(i) Author Polarity Ratio. It denotes the aggregate polarity
of all messages posted by the same author prior to the given
tweet t. Its value expresses her overall mood in the past,
which is decisive for the sentiment of the subsequently pub-
lished tweets. The more positive (negative) tweets she has
already published, the more likely it is for ¢ to be positive
(negative), as well.

(ii) Author’s Followees Polarity Ratio. Users pay particular
attention to the messages posted by the users they subscribe
to. They are expected, therefore, to be influenced by their
opinions and sentiments. The higher (lower) the polarity
ratio of their posts is, the more probable it is for ¢ to be
positive (negative) as well. To quantify this notion, this fea-
ture captures the aggregate sentiment of all messages posted
by the author’s followees prior to tweet t.

(iii) Author’s Reciprocal Friends Polarity Ratio. It expresses
the aggregate sentiment of the tweets posted by the author’s
reciprocal friends before she posted tweet . These friends
are expected to share a higher degree of homophily with the
author [32] and, thus, the higher (lower) the polarity ratio
of their posts is, the more probable it is for ¢ to be positive
(negative), as well.

(iv) Topic(s) Polarity Ratio. This feature is only valid for
tweets containing at least one hashtag. It denotes the over-
all sentiment of all tweets that - regardless of their author
- pertain to the same topic and have been posted prior to
the given tweet t. In case a tweet contains more than one
hashtag, this feature considers the entire set of tweets that is
derived from the union of the individual sets of topic tweets.
The higher the portion of positive (negative) tweets in the
resulting set, the more likely it is for ¢ to be positive (nega-
tive), as well.

(v) Mention(s) Polarity Ratio. This feature applies only to
tweets containing at least one mention to a Twitter user.
It represents the overall sentiment of all tweets that - re-
gardless of their author - mention the same user and have
been posted prior to the given tweet t. In case of multiple
mentions, this feature considers the union of the individual
sets of mention tweets. The more positive (negative) tweets
mention a particular user, the more likely it is for ¢ to be
positive (negative), as well.

(vi) URL(s) Polarity Ratio. This feature is only applicable
to tweets that contain at least one URL. It expresses the
aggregate polarity of all tweets with the same URL that have
been posted prior to the given tweet t, regardless of their
author. In case a single tweet contains multiple URLs, this



feature considers the union of the individual URL tweets.
The more positive (negative) tweets are associated with the
referenced URL(s), the more likely it is for ¢ to be positive
(negative), as well.

Note that the first half of these features are based on so-
cial graph information, while the second half is exclusively
derived from the related resources.

Discretized Social Polarity Model. Polarity Ratio
produces numeric values, but their actual magnitude might
be less significant than their polarity sign (i.e., positive or
negative). If this is true, the processing of the corresponding
nominal attributes will be significantly more efficient [16].
To validate these premises, we developed a novel method
for discretizing the polarity ratio that depends on the po-
larity classification problem at hand. For its general version
(i.e., Problem 2), the discretized polarity ratio drg (T') over a
collection of tweets T takes as value one of the three polarity
classes, based on the numeric value of r,(T"), as follows:

negative, if rp(T) < —1
drd(T) = { neutral, if —1<r,(T) <1
positive, if 1 <rp(T).

For its binary version (i.e., Problem 1), the discretized po-
larity ratio dr5 (T) is defined as follows:

negative, if r,(T) <0
dr8(T) =< equal, ifrp,(T)=0
positive, if r,(T) > 0.

4.2.2 Social Context Model

To reduce the feature extraction cost of the above model,
we also consider an alternative set of context-based features
that can be directly derived from a user’s account and the
characteristics of her messages. To illustrate their function-
ality, we present their average value for each polarity class,
as it was derived from the data set of 3 million tweets (1
million tweets per class) that is presented in Section 5.

(i) Number of Author’s Tweets. It represents the number of
tweets the author of the given tweet ¢t had published, prior
to posting t. The authors of neutral tweets are more pro-
lific, posting 387 messages on average, whereas the authors
of negative and positive ones post 356 and 298 tweets, re-
spectively.

(ii) Number of Author’s Followees. It denotes the number
of users the author of the input tweet ¢ had subscribed to,
prior to publishing ¢. Authors of neutral tweets were found
to have the most subscriptions (351 followees on average),
followed by the authors of the positive (281 followees) and
the negative ones (271 followees).

(iii) Number of Author’s Reciprocal Friends. It stands for
the number of reciprocal friends the author of the given
tweet had, before publishing it. Authors of neutral tweets
were found to have substantially more reciprocal friends (244
on average), followed by the authors of positive (195) and
negative ones (181).

(iv) Number of Topics. It denotes the number of hashtags
contained in the given tweet. Objective messages are typ-
ically related to a larger number of topics (0.14 hashtags
on average), while subjective tweets contain almost half as
much (0.08 hashtags), independently of their polarity.

(v) Number of Mentions. It expresses the number of users
mentioned in the input tweet. Positive tweets were found to
contain the highest amount of mentions (0.75 on average),
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whereas negative and neutral ones merely refer to 0.51 and
0.54 users, respectively.

(vi) Number of URLs. It denotes the number of URLs that
the given tweet contains. The higher their number is, the
more likely the author is to provide her subscribers with ob-
jective information; indeed, neutral tweets contain the high-
est number of links (0.43 on average), whereas the positive
ones contain half as much (0.21). Negative ones lie in the
middle of these two extremes, with 0.36 URLs on average.
Basically, these features rely on the same evidence with
the Polarity Ratio model, but do not take into account the
aggregate polarity of the underlying instances. Thus, they
are directly comparable with it, illustrating the contribution
of Polarity Ratio to the accuracy of context-based models.

S. EVALUATION

In this section, we analytically present our thorough ex-
perimental study that aims at identifying the optimal clas-
sification settings for Sentiment Analysis over microblogs;
that is, the combination of a classification algorithm and a
set of features that offers the best balance between effective-
ness and efficiency.

Data Set. To examine the performance of our models
in practical settings, we conducted a thorough experimental
study on a large-scale multilingual collection of real Twit-
ter messages. It is the same data set that was employed
in [35], comprising 476 million tweets posted in a period of
7 months - from June 2009 until December 2009. Among
them, we identified 6.12 million negative and 14.12 million
positive tweets following the common practice in the liter-
ature, which employs emoticons as a golden standard [5,
1, 22]°. We randomly selected 1 million tweets from both
polarity classes to form the data set for Problem 1, called
Dyinary. We additionally selected a random sample of neu-
tral tweets to create the data set for Problem 2, called
Dygenerai- Both of them are among the largest data sets
employed so far in the context of Sentiment Analysis over
microblogs. Note also that our sampling did not restrict
the selected tweets to specific language, so as to ensure the
multilinguality of our data sets.

To derive the social context of individual tweets, we em-
ployed the snapshot of the entire Twitter social graph that
was used in [17], which dates from August 2009. This time
period coincides with that of the recorded messages, but
does not depict the actual evolution of the underlying social
network during that period. Its static information allows
only for a mere approximation of the actual performance
of the context-based models. To estimate the actual value
of the polarity ratios they involve, we relied again on the
positive and negative emoticons.

Metrics. To measure the effectiveness of the classifica-
tion models, we considered the established metric of clas-
sification accuracy «. It expresses the portion of the cor-
rectly classified tweets and is formally defined as follows:
a = TPT+7PFP7 where TP stands for true positives (i.e., the
number of tweets that were assigned to the correct polarity
class) and F'P denotes false positives (i.e., the number of
incorrectly classified tweets).

Evaluation Method. To evaluate the performance of

9 Assuming that a positive (negative) emoticon always corre-
sponds to a positive (negative) sentiment is a simplification
hypothesis. Nevertheless, it is the only method employed in
the literature for large-scale experimental studies.



Prob. 1 Prob. 2 Prob. 1 Prob. 2 Prob. 1 Prob. 2
Term Vector 67.38%  50.68% Term Vector 70.66%  52.65% Term Vector 1,245 1,221
2-grams 61.99% 50.11% 2-grams 69.80% 57.36% 2-grams 1,796 1,848
3-grams 68.72% 53.15% 3-grams 72.89% 57.86% 3-grams 6,255 6,358
4-grams 70.62%  53.41% 4-grams 71.76%  54.63% 4-grams 10,888 11,045
2-gram Graphs 64.38%  45.86% 2-gram Graphs 68.70%  57.11% 2-gram Graphs 6 9
3-gram Graphs 79.95% 65.28% 3-gram Graphs 74.02% 63.12% 3-gram Graphs 6 9
4-gram Graphs 91.51% 83.80% 4-gram Graphs 86.10% 79.18% 4-gram Graphs 6 9
Discr. 2-gram Graphs 65.58% 48.01% Discr. 2-gram Graphs 64.35% 52.67% Discr. 2-gram Graphs 3 9
Discr. 3-gram Graphs  89.71%  78.52% Discr. 3-gram Graphs  71.69%  60.89% Discr. 3-gram Graphs 3 9
Discr. 4-gram Graphs 97.12% 93.43% Discr. 4-gram Graphs 84.57% 78.82% Discr. 4-gram Graphs 3 9

Table 1:
Multinomial.
our models, we employ the 10-fold cross-validation approach.
For the evaluation of the n-gram graphs model, we followed
a special procedure: first, we randomly selected half of the
training set of each polarity class to build the corresponding
class graph. Then, the tweet graphs of all training instances
are compared with all polarity graphs and the classification
algorithm is trained over the resulting similarities values.
Finally, the tweet graphs of the testing instances are com-
pared with all class graphs and the trained algorithm decides
for their label according to the derived similarity features.
It should be stressed at this point that the emoticons were
removed from all training and testing tweets, when building
any of their representation models.

Classification Algorithms. To thoroughly evaluate the
performance of our models, we consider several state-of-the-
art classification algorithms of varying time and space com-
plexity. For the comparative analysis of the document repre-
sentation models, we employed the Naive Bayes Multinomial
(NBM) and the Support Vector Machines (SVM), two es-
tablished algorithms for text-categorization, with the former
being substantially more efficient than the latter [34]. For
the rest of the models, we employed three of the most pop-
ular and established classification algorithms: Naive Bayes
(NB), C4.5 and the SVM. They comprise a quite represen-
tative set of classification methods with respect not only to
their internal functionality (i.e., probabilistic learning, de-
cision trees and statistical learning, respectively), but also
to their efficiency (they appear in ascending order of time
complexity). For a detailed description of these algorithms,
see [34].

Setup. All models and experiments were fully imple-
mented in Java, version 1.6. For the functionality of the
n-gram graphs, we employed the open source library of JIn-
sect'®. For the implementation of the classification algo-
rithms, we used the Weka open source library'', version 3.6
[34]. The only exception was the use of the LIBLINEAR
optimization technique [8], which was employed for scaling
the SVM to the high dimensionality of the term vector and
the n-grams models. Given that LIBLINEAR also employs
linear kernels for training the SVM, it is directly compara-
ble with the Weka’s default SVM configuration, which was
applied to the other models. In every case, we employed the
default configuration of the algorithms, without fine-tuning
any of the parameters. All experiments were performed on
a desktop machine with 8 cores of Intel i7, 16GB of RAM
memory, running Linux (kernel version 2.6.38).

Comparison of Content-based Models. To identify
the most appropriate representation model for the sparse,
noisy, multilingual, user-generated content of microblogs, we
applied all models of Sections 4.1.1 to 4.1.3 to the data sets

Machines.

DOhttp://sourceforge.net/projects/jinsect
Uhttp://wuw.cs.waikato.ac.nz/ml/weka

Accuracy of Naive Bayes Table 2: Accuracy of Support Vector Table 3: Number of features per rep-

resentation model.

Dyinary and Dgenerar. For the term vector and character
n-grams model, we did not employ any preprocessing tech-
nique, due to the multilingual content we are considering.
To limit the feature space, we merely employed a thresh-
old of minimum frequency, setting it equal to 0.01% of the
size of the input tweets collection. Thus, words or n-grams
that appear in less than 200 (300) of the tweets of Dpinary
(Dgenerat) were not taken into account for Problem 1 (Prob-
lem 2). The outcomes of our experiments are presented in
Tables 1 to 3.

Table 1 reveals the following interesting pattern in the
performance of NBM over both polarity classification prob-
lems: the accuracy of the n-grams model increases with the
increase in n, exceeding that of the term vector model for
n > 2 (i.e., for trigrams and four-grams). As expected, the
n-gram graphs follow the same pattern: the higher the value
of n, the higher the classification accuracy. Most impor-
tantly, though, they outperform both the term vector and
the corresponding n-grams model in all cases, but for n > 2.
It is remarkable, though, that the discretization of the graph
similarities conveys a significant increase to the performance
of the n-gram graphs, which exceed 10% in most cases. On
the whole, the highest accuracy is achieved by the four-gram
graphs with discretized similarity values.

Similar patterns are depicted in the performance of SVM:
the term vector model exhibits the lowest effectiveness, fol-
lowed by the n-grams model, whose accuracy increases with
the increase of n. The n-gram graphs outperform all other
models, with their accuracy increasing proportionally to 7.
Note, though, that their discretized values induce no im-
provement in accuracy, probably because SVM are crafted
for numeric attributes. It is also worth noting that, in sev-
eral cases, the SVM exhibits a lower performance than NBM;
the reason is that we skipped the time-consuming process of
configuring SVM parameters (e.g., kernel functions) to their
optimal values.

The low efficiency of the traditional representation models
is reflected in Table 3: the n-grams involve the most complex
feature space among all representation models, with their di-
mensionality increasing significantly with the increase of n.
They are followed by the term vector model, which employs
around 30% less features than bigrams; this is because n-
grams are more frequent than entire tokens, thus resulting
in a higher number of features that exceed the frequency
threshold. In complete contrast, the n-gram graphs involve
three orders of magnitude less features, as their dimension-
ality depends on the number of classes rather than the di-
versity of the vocabulary of the given tweets.

On the whole, the four-gram graphs achieve the highest
accuracy across all representation models and classification
algorithms - especially after discretizing their values - even
when they are combined with a highly efficient, but simple
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Problem 1

Problem 2

4-gram Discr. Discr.

Social

4-gram Discr. Discr. Social

Graphs Graphs Punct. Polarity Polarity Context Graphs Graphs Punct. Polarity Polarity Context

NB 91.51% 96.36% 56.64% 53.40% 74.61% 51.06% 75.82% 93.43% 44.69% 37.40% 60.02% 34.33%
C4.5 98.76% 97.17% 60.98% 80.08% 72.89% 60.44% 96.85% 94.98% 46.00% 66.55% 61.47%  46.38%
SVM 86.10% 84.57% 50.12% 73.19% 72.89% 56.93% 79.18% 78.82% 39.02% 52.86% 57.27%  36.68%

Table 4: Accuracy of all combinations between models and classification algorithms over both polarity problems.

algorithm like NBM. This means that they are more suitable
for tackling the inherent characteristics of microblog content
(cf. Section 1) and, thus, we exclusively employ this content-
based model in the following.

Content-based vs. Context-based Models The per-
formance of all models of Sections 4.1.3 to 4.2.2 is illustrated
in Table 4. Note that the lowest meaningful accuracy (i.e.,
the performance of the random classifier) is 50% for Prob-
lem 1 and 33.33% for Problem 2.

We can notice the following patterns: first, the four-gram
graphs model outperforms Social Polarity by (around) 20%
in the case of Problem 1 and 30% for Problem 2. Given,
though, that the latter does not consider textual patterns at
all, its performance is remarkable, as its accuracy is compa-
rable or even better than that of the traditional document
representation models (i.e., term vector and n-grams model).

Second, the features with low extraction cost (i.e., Punc-
tuation and Social Context Model) have a performance very
close to that of the random classifier, unless they are com-
bined with C4.5. Even in that case, though, their accuracy
is significantly lower than that of the n-gram graphs and the
Social Polarity model, respectively. For context-based mod-
els, this apparently means that plain context features cap-
ture rather poor information, thus turning PR indispensable
for high effectiveness.

Third, the discretization methods have a rather small im-
pact on the effectiveness of all models across both polarity
problems; they degrade accuracy just by 6% for Social Po-
larity and less than 3% for 4-gram Graphs. For NB, though,
they consistently boost accuracy by more than 10%.

Fourth, the additional, third polarity class in Problem 2
has a significant impact on the less effective approaches, re-
ducing their accuracy by 10% in most cases. However, con-
sidering the highest performance in each problem, we can see
that the effect of the additional class is minimal, lowering
accuracy just by 2%.

Fifth, and most important, the C4.5 algorithm achieves
the highest performance across most models and problems,
taking values very close to absolute correctness. However,
there is no clear winner between NB and SVM, probably
because of the absence of configuration for the parameters of
the latter. Nevertheless, the performance of NB is very close
to that of C4.5 when applied on discretized features. In fact,
the combination of NB with discretized features provides the
best balance between effectiveness and efficiency: it is by far
the most efficient combination, while its effectiveness is just
2% lower than the maximum one in both problems.

It is worth noting at this point that we also examined
the combination of context-based models with content-based
ones, but do not present the exact outcomes due to lack of
space. It suffices to say that it was significantly lower than
that of the four-gram graphs across all algorithms and prob-
lems. For instance, the accuracy of C4.5 was 93.09% and
89.75% for Problem 1 and Problem 2, respectively; for the
other algorithms, though, the performance was around the
average accuracy of the individual values. This means that
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Problem 2
Csnegn CSTLEU? CSpOS
dstm(C'Sneg, CSneu)
Discr. Graphs dsim(CSneg, CSpos) dsim(CSneg, C'Spos)

dsim(CSnew, CSpos)
Table 5: The selected features of the 4-gram graphs
model for both polarity classification problems.

Model
4-gram Graphs

Problem 1
CSneg ) CSpos

Problem 1 Problem 2
4-gram  Discr. 4-gram  Discr.
Graphs Graphs Graphs Graphs

NB 8287%  97.12%  76.41%  94.92%
C4.5 97.42% 97.12% 95.40% 94.92%
SVM  84.53% 97.12% 80.43% 94.82%

Table 6: Accuracy of the filtered features of the four-
gram graphs model.

their combination inserts noise in the classification proce-
dure, thus indicating that the four-gram graphs model alone
provides the optimal approach to SA over microblog content.

Attribute Filtering over 4-gram Graphs. To further
enhance the efficiency of the four-gram graphs model, we
applied on its features the correlation-based feature subset
selection method [12] combined with the best-first search
algorithm. The selected features for both problems are de-
picted in Table 5. Basically, the features that rely on the
containment similarity were chosen, indicating that CS cap-
tures the most reliable textual patterns. Their performance
over Dyinary and Dgenerar is presented in Table 6.

We can easily notice that there is a negligible decrease in
accuracy by around 1% for the numeric features. In the case
of the nominal features, however, the reduction is even lower,
being - in fact - statistically insignificant. Most importantly,
though, the discretized features exhibit exactly the same
accuracy across all algorithms. This means that all useful
information is encapsulated in the selected features, enabling
the use of simple, highly efficient classification algorithms
without any impact on effectiveness.

6. RELATED WORK

Several surveys have recently reviewed the most promi-
nent works on Sentiment Analysis [23, 28, 30]. Among
them, though, only [30] discusses the new trend of min-
ing sentiments in the streaming, user-generated content of
microblogs. Similar to our work, the majority of relevant
papers examines SA on the level of individual documents.
Depending on the specific sub-problem they are tackling,
they can be grouped in the following categories:

Predictive Sentiment Analysis. The aim of these
works is to discover strong correlations between the aggre-
gate sentiment of a collection of tweets and the traditional
measures for polling public opinion (e.g., political elections).
For example, [21] employed a large corpus of Twitter mes-
sages and verified that its aggregate mood provides a good
estimation of the evolution of consumer confidence and the
approval of presidential work in the USA. In a similar vein,
[31] analyzed a large collection of tweets and found out that
the relative frequency of mentions to political parties was
strongly correlated with the actual outcomes of Germany’s



presidential elections in 2009. Equally strong is also the cor-
relation of Twitter’s aggregate mood with the evolution of
stock markets and the value of the Dow Jones Industrial
Average, in particular [2].

Fine-grained Sentiment Analysis. The goal of these
works is to identify the correct feeling among a larger set of
possible sentiments. For example, [3] considers the six dis-
tinct emotional states, collectively called POMS (i.e., Ten-
sion, Depression, Anger, Vigour, Fatigue and Confusion),
whereas [29] considers the eight primary emotions (i.e., ac-
ceptance, fear, anger, joy, anticipation, sadness, disgust and
surprise). At a finer sentiment granularity, [5] defines 51 dif-
ferent sentiments extracted from hashtags along with 16 ones
extracted from smileys, introducing a classification scheme
that applies k-NN on top of context-based features.

Target-dependent Sentiment Analysis. The works
of this category apply SA techniques on the results of key-
word queries, categorizing them into positive, negative and
(rarely) neutral. This task has already been explored in the
context of Web pages and news articles [20] as well as for
customer reviews [25]. In the field of microblogs, it is pri-
marily explored by on-line services that offer SA over Twit-
ter, such as Twendz and TweetFeel. Furthermore, works
in [11] and [26] attempted binary Sentiment Classification
in Twitter using content as well as context features in the
second case, reaching accuracies up to 84.7% in the best
case. The main drawback of those solutions is that they are
language-dependent, with the exception of [11], and they
are also based on target-independent algorithms. [14] im-
proves on them with a novel, three-step approach that is
target-dependent and context-aware.

7. CONCLUSIONS

In this paper, we examined several content-based tech-
niques for capturing textual patterns for SA over microblog
content and verified that traditional models are inadequate
for tackling the intricacies it involves. For higher effective-
ness, we proposed contextual features as well as the n-gram
graphs model and several techniques for enhancing their effi-
ciency: discretization, attribute filtering and naive classifica-
tion algorithms. Our experimental evaluation validated that
high levels of accuracy and efficiency can be achieved simply
by assigning each tweet to the polarity class that shares the
maximum number of neighboring pairs of 4-grams with it.

In the future, we intend to further improve the perfor-
mance of contextual features, as they are particularly useful
in real-world integrated SA applications: they involve a min-
imal extraction cost (merely requiring some counters) and
are capable of handling the intricacies of microblog content.
Our plan is to enhance PR by taking time into account, so
that it considers only the latest posts of a message’s con-
text. We also plan to examine how the update functionality
of n-gram graphs adapts to new patterns, supporting the
evolution of sentiments over time.
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