
Link and Annotation Prediction Using Topology

and Feature Structure in Large Scale Social
Networks

Burak Isikli1,2, Fatih Erdogan Sevilgen1, and Mustafa Kirac2

1 Department of Computer Engineering Gebze Insititute of Technlogy,
Gebze, Kocaeli, Turkey
sevilgen@gyte.edu.tr

2 Turkcell, Inc. Istanbul, Turkey
{burak.isikli,mustafa.kirac}@turkcell.com.tr

Abstract. Repeated patterns observed in graph and network struc-
tures can be utilized for predictive purposes in various domains includ-
ing cheminformatics, bioinformatics, political sciences, and sociology. In
large scale network structures like social networks, graph theoretical link
and annotation prediction algorithms are usually not applicable due to
graph isomorphism problem, unless some form of approximation is ap-
plied. We propose a non-graph theoretical alternative to link and an-
notation prediction in large networks by flattening network structures
into feature vectors. We extract repeated sub-network pattern vectors
for the nodes of a network, and utilize traditional machine learning al-
gorithms for estimating missing or unknown annotations and links in
the network. Our main contribution is a novel method for extracting
features from large scale networks, and evaluation of the benefit each
extraction method provides. We applied our methodology for suggesting
new Twitter friends. In our experiments, we observed 11-27% improve-
ment in prediction accuracy when compared to the simple methodology
of suggesting friends of friends.

Keywords: social networks, data mining and knowledge discovery, big
data, business intelligence, link prediction, graph processing, graph
mining.

1 Introduction

Importance of network structures has been recently increasing, due to advance-
ments in data collection, storage, and processing technologies. Social networks,
mobile call networks, biological networks, and World Wide Web are some exam-
ples of network structures that many end users of online services and researchers
deal with. Network structures can be utilized for revealing information that is
difficult to obtain from nodes directly. For instance, discovery of disease related
proteins within a protein interaction network [5], targeting potential customers
with ads by using social networks [4], and looking for similar graph patterns

S. Kozielski et al. (Eds.): BDAS 2014, CCIS 424, pp. 238–249, 2014.
c© Springer International Publishing Switzerland 2014

Link and Annotation Prediction 239

in chemical molecular structures are some tasks that can only be accomplished
using a network oriented analytic methodology.

A node-annotated network consists of i) a list of nodes, ii) links representing
some relationship between nodes, and iii) features associated with nodes. For ex-
ample, consider the Facebook network: Facebook is a node-annotated social net-
work where its nodes are people, friendship activities amongst people are links,
and liked/favorited items are node features. Since the association of Facebook
users with content items is voluntarily accomplished by the users themselves,
not all users reveal all pieces of information about themselves. The problem we
primarily attack in this paper is the problem of completing missing or incom-
plete node annotations. We present a novel methodology for predicting unknown
annotation of network nodes. We propose a solution to network link prediction
problem [12] by reducing it into another form of node annotation prediction
problem as well.

Recent research shows that homophily [3] and contagion [3] in real world
networks suggest shared features between connected network nodes. In addition,
correlation between existing node features is shown to be employed for predicting
missing or unknown features of network nodes [15]. Such properties of real world
networks are utilized by learning correlations between existing node annotations
into a data mining model, and applying such model to network nodes with miss-
ing annotations. D. Liben et al [9] showed that features from network topology
of a co-authorship network can be used for supervised learning effectively. This
is the first and common approach for solving the link prediction problem. Taskar
et al. [13] fulfilled the relational Markov network algorithm. They aim to pre-
dict missing links in a network of web pages and a social network. Although
it is not directly related to link prediction problem, users are linked by their
common interests. Natural language processing (NLP) and text mining methods
[7] are used to predict interests by finding tweet similarity. Because of multi-
tude of common interests, users can be associated with each other. There are
several other researches can be related to our work such as Goldberg and Roth
[2]. They employed the neighborhood as a reliable property of small networks
(e.g. protein-protein interactions) for confidence. Clauset et al. [1] developed a
prediction algorithm on social and biological networks.

Our approach for predicting missing node annotations in a network has the
following steps. First, the network is preprocessed (i.e., extract-transform-load)
to collect for each node all available annotation patterns in the network neighbor-
hood of that node, and create an integer feature vector representing the counts
of annotation patterns observed in the whole network. This approach is similar
to text mining [7], where text documents are converted into term frequency vec-
tors. Next, we create a table from the count vectors of network nodes, and feed
into machine learning algorithms in order to obtain models that explain com-
plex relationships between node annotations. Finally, we utilize resulting models
learned from the network for estimating whether a particular network node is
highly likely to be associated with a target feature annotation.

240 B. Isikli, F.E. Sevilgen, and M. Kirac

The process summarized above requires processing large amount of data. This
process depends on the ability of forming and counting annotation patterns in a
large network data. In real world cases, network data is so huge that it does not
fit in the memory of a single computer with commodity hardware. One option
is building an expensive supercomputer, and applying a trivial pattern counting
algorithm. Another option is making use of a smaller size, sample data. In the
latter case, sampling network structures partitions it into disconnected compo-
nents, resulting in information loss. We propose a hybrid approach: We compute
network patterns in a disk-based distributed processing environment, and con-
vert network data into a node-based feature vector sets. Then, we run machine
learning algorithms on a single computation framework using data sampled from
the node-based feature sets.

Main contributions of this paper are 1) a systematic way of converting net-
work structures into flat vector sets, 2) a scalable methodology for computing
feature vectors in a parallel DBMS environment, and 3) a novel solution to link
prediction problem by formulating it as a form of node annotation prediction
problem.

2 Methods and Algorithms

Definition 1 (Network): A directed network G = (N,L,F,A) is a structure
that consists of a set of nodes N, set of links L that connects two nodes (l ∈ L
then l : n1 → n2 and n1,n2 ∈ N), set of features F that have information about
node (e.g. person of interests, hobbies), and set of feature annotations A that
associates nodes with features (f : n → a, a ∈ A,n ∈ N, and f ∈ F).

Example 1: Fig. 1 illustrates an example network structure. Nodes that repre-
sent social network profiles are numbered from 1 to 6 and each node is assigned
some features, such as Sailing, Swimming and Baseball. Each annotation repre-
sents existence of feature such as if a person like sailing, sailing’s annotation is
1. Nodes are connected with links that represent friendship relationship between
nodes.

In this paper, we study Twitter Social Network presented in [6]. Twitter graph
is created in the form of a two-column table of user pairs. An excerpt from a
Twitter follower table is shown in Tab. 1. Each column in the Twitter table
denotes a Twitter user node, and each row in the Twitter table represents a
directed link. Hence a Twitter table is a list of links in the Twitter network.
Twitter network and further details can be obtained via Twitter Application
Programming Interface (API) [14]. The Twitter dataset we employ consists of
approximately 40 million nodes and 1.5 billion links.

Problem 1 (Network Link Prediction): Real world networks continuously
evolve, as they gain or lose nodes, links, and annotation. Hence, a network G =
(N,L,F,A) is a snapshot of a real world network at time t1, and the network

Link and Annotation Prediction 241

Fig. 1. Representing a graph. Each circle denotes a node, each arrow between them
denotes a link and each node has a label which is representing person’s interests.

Table 1. Twitter graph table. It consists of user ids that denote whom following. For
example user 48954673, 49233593, 27433315, 60843485 are followers of user 43661838.
User 27433315 is a follower of user 43661851.

To Id From Id

43661838 48954673

43661838 49233593

43661838 27433315

43661838 60843485

43661851 27433315

evolves to G′ = (N′,L′,F′,A′) at t2 where t2 > t1. Network link prediction
problem is to obtain a new l = n1

′ → n2 (n1,n2 ∈ N,n1,n2 ∈ N′) such that
l �∈ L, l ∈ L.

Problem 2 (Network Annotation Prediction): Real world network data
does not perfectly represent the underlying network. Node annotations are not
complete, and existing annotations may not be correct due to data quality issues.
Let G = (N,L,F,A) is a real world network, and G′ = (N′,L′,F′,A′) is the
known representation of G in the data obtained. Network annotation prediction
problem is to obtain the annotations in A − A′ with some probability and
confidence. The problem can also be configured as a network annotation
correction, where the existing annotations in A−A′ can be assigned of being
noise or error with some probability and confidence.

Definition 2 (Network Neighborhood): A node n ∈ N in graph G =
(N,L,F,A) has incoming direct neighbor of m such that m ∈ N, and∨
l1 ∈ L, l1 = m → n, and has an outgoing direct neighbor o such that

o ∈ N, and
∨
l2 ∈ L, l2 = n → o. A directed path of length z from n ∈ N to

nz ∈ N in G consists of links l1, l2, . . . , lz such that l1 = n → n1, l2 = n1 → n2,

242 B. Isikli, F.E. Sevilgen, and M. Kirac

. . ., and lz = nz−1 → nz. All direct neighbors of a node n are connected to
n through a directed path of length 1. Network neighborhood of a node n
consists of nodes that have at least one directed path connected to n. When we
limit the maximum length of directed paths between all nodes in the network
neighborhood of node n and the node n by a fixed number z, we say that the
radius of network neighborhood of n is z.

In this paper, we focus on predicting properties of Twitter user profiles. There
are many ways of obtaining Twitter user interest. In [11], the text in the news
feed of users, or the tweets of the users are processed through NLP and text
mining to obtain the concepts the users interested in. In another work, physical
locations and point of interests of the users are retrieved from their check in
and shared locations. As locations reflect personal interests, it is also possible to
generate location-based Twitter user interests [8]. In this work, we consider the
celebrities that the Twitter users follow, as their interests. In Twitter, there is no
distinction between celebrity and a regular user, as Facebook does (i.e., people
and pages). Hence, we make use of a simple approach to make such distinction.
When the follower count of a user is above some certain threshold, we classify the
user as a celebrity. Activities of following celebrities are considered as interests
of other regular users. In short, our aim in this paper is to predict interests (i.e.,
annotations) of regular users or equivalently, estimating whether regular users
would follow (i.e., show interest) a celebrity user (e.g., a famous actress, a rock
band, or an auto maker brand).

Definition 3 (Transformation of Network Link Prediction problem to
Network Annotation Prediction problem): Real world networks follow a
scale-free property [6] where some nodes have very high link counts whereas
many nodes have quite few link counts. Usually, the nodes with very high link
counts have a special real world meaning (i.e., celebrity people, or brands in
the Twitter network). Hence, set of regular nodes (i.e., common users) are ob-
tained by removing all nodes with very high link counts (i.e., above some certain
threshold). Not to loose link information of removed nodes, the information is
stored as node annotations; suppose that u is a celebrity node with dense link
information, and v and w are common nodes with much less link counts. Fur-
ther suppose that the network G has the links v → u and w → v. The links
v → u and w → v → u are converted to two annotations of v and w as, v is
assigned {outgoing U}, and w is assigned {incoming U} as new annotations. As
we converted link information to annotation information, we can now formulate
link prediction problem as an annotation prediction problem. In the beginning,
a Twitter network dataset is a non-annotated directed graph. After we remove
all the celebrity nodes from the network, and convert links of celebrity nodes
into annotations of regular nodes, it becomes an annotated directed graph.

Definition 4 (Network Pattern): Given a large directed annotated
G = (N,L,F,A), a network pattern is a sub-graph p = (N′,L′,F′,A′) such
that N′ ⊆ N, L′ ⊆ L, F′ ⊆ F, A′ ⊆ A, and p is a connected component where

Link and Annotation Prediction 243

there exists at least one directed path between everyn1,n2 ∈ N′ . In the case when
p is a much smaller sub-graph of G, there can be multiple isomorphic mappings
between p and G. In that case, we say p is a repeated network pattern in G.

Definition 5 (Network Pattern Flattening): A network pattern
p = (N′,L′,F′,A′) in networkG = (N,L,F,A) can be flattened into a vector as
follows; define annotation subset of a node n as S(n) = {si|si → f , si ∈ A, f ∈ F,
and n ∈ N}. Then, we compute a list P of all annotation subsets of a node n
and all other nodes in the neighborhood of n by radius z. It is possible that p
can have repeated annotation subsets. We can group p by distinct annotation
subsets and record the number of repetitions as counts. A vector that consists
of counts of such network patterns is called a flattened vector of a network
pattern (See Tab. 2).

Example 2: In Example 1, node 4 has annotations Tennis (T) and Football (F)
hence annotation subsets {T, F, TF}. Node 4 has an incoming link from node 1
and node 1 has annotations data mining (M), Sailing (S), and swimming (W),
hence annotation sets {M, S, W, MS, MW, SW, MSW}. Network neighborhood
of Node 4 on radius 1 can be flattened as {T:1, F:1, TF:1, M:1, S:1, W:1, MS:1,
MW:1, SW:1, MSW:1} where T:1 denotes that pattern T appears only once.
Length-1 patterns in this list are {T:1, F:1, M:1, S:1, W1}. Adding all other
annotations (i.e., Graph Mining (G), Ski (SK), Baseball (B) from the network,
final flattened vector becomes {T:1, F:1, M:1, S:1, W:1, G:0, SK:0, B:0}. It is
also possible to separate a flattened vector to indicate whether a pattern came
from an incoming neighbor or self and so on. A separated flattened vector for
this example becomes { self:{T:1, F:1, G:0, SK:0, B:0}, incoming radius 1: {M:1,
S:1, W:1, G:0, S:0, B:0} }.

Pattern discovery and counting is the step where we flatten network neigh-
borhoods of nodes in a network into feature vectors. First we create a table
including two columns which names are from id and to id, representing the
Twitter following graph (TWITTER GRAPH) using the dataset in [6]. We
define a celebrity node table using a predefined threshold on count of links
(CELEBRITY NODES). The threshold is decided by looking up to the count
data. Then top-k celebrity nodes are selected (k piece) from the data created in
the previous step using ordering of the count data.

These selected top-k celebrity nodes are used as feature using
TWITTER GRAPH network (N, L, F, A) and then feature annotations are
extracted from network nodes and links, and created a table named FEA-
TURE TABLE. The difference between celebrity node and feature is that
celebrity node can be famous persons (singer, artist...etc.), or ordinary person
with high link count but features can’t be a famous person which means we
decide which one is used so that they are subset of celebrity nodes excluding the
famous persons.

We can compute the number of annotation subsets as support. For example,
in order to compute length-1 patterns in the outgoing neighbors (denoted by o1)

244 B. Isikli, F.E. Sevilgen, and M. Kirac

Table 2. This table is explaining the each different kind of pattern type regarding the
neighborhood in demand

Type Description

t1 Patterns that links has 1 length (radius is fixed, for instance set to 1)

i1
Patterns that incoming links has 1 length (radius is fixed, for instance set to
1)

i2
Patterns that incoming links has 2 length (radius is fixed, for instance set to
1)

o1
Patterns that outgoing links has 1 length (radius is fixed, for instance set to
1)

o2
Patterns that outgoing links has 2 length (radius is fixed, for instance set to
1)

c1
Patterns that links has length 1(radius is fixed, for instance set to 1, i.e. t1-
i1-o1)

c2
Patterns that links has length 2 (radius is fixed, for instance set to 1, i.e.
t1-i2-o2)

c3
Patterns that links has length 3 (radius is fixed, for instance set to 1, i.e.
t1-i3-o3)

n0 Patterns that links has radius 0 (length is predefined, for instance set to 1)

n1 Patterns that links has radius 1 (length is predefined, for instance set to 1)

n2 Patterns that links has radius 2 (length is predefined, for instance set to 1)

n3 Patterns that links has radius 3 (length is predefined, for instance set to 1)

of all nodes, node itself, and total link of each node which is matched from the
feature table is used excluding the celebrity nodes from the TWITTER GRAPH
set.

More complex patterns can be obtained, say annotation subsets of length-2
in the outgoing neighborhood of distance 1. The hint is combining two different
features to use as a single feature using the same table (FEATURE TABLE)
twice and same rules we explained above, in the query such as feature1 || ‘-’ ||
feature2.Thus these new-forming features are permutation of features.

SQL provides a viable and scalable option to flatten network structures into
feature vectors. After a bunch of transformation SQLs, we convert Twitter graph
into a set of records, where each record represent a network node, flattened
feature vector of that node, and known annotations of that network node. This
tabular representation allows us to use various machine learning algorithms to
make predictions.

There are several powerful classification machine learning algorithms that can
be used in this work. Although their performances are comparable, one of them
usually works better than others. In this work, we compared four supervised ma-
chine learning (classification) algorithms. Support Vector Machine (SVM) [10],
Naive Bayes (NB), Generalized Linear Model (GLM), Decision Tree (DT). They
are compared using accuracy and lift. All the algorithms are available in Oracle
Data Miner (ODM) Library. Default ODM parameter values are used since they
perform quite good. For all the algorithms, we used k-fold cross validation.

Link and Annotation Prediction 245

3 Experimental Results

All the experiments are performed on Oracle Exadata V2 using 64 bit Red
Hat Linux 2.4 and the Oracle 11g database. Preprocessing is programmed with
Structured Query Language (SQL) and Procedural Language/Structured Query
Language (PLSQL).

As part of our experiment, the nodes having more than 90000 links are consid-
ered as celebrity. The nodes with link count from 90000 to 100000 are selected as
features. There are 34 such nodes. Using these features, tag patterns are stored
in a tag pattern table including type, node, feature, and count of pattern that
has links (support). However, it’s hard to calculate the table due to large number
(1785) of different patterns. So, only patterns having more than 10000 links are
selected. The patterns are enumerated and the lookup table that contains the
information about patterns for each type with their support is created. From
this, another table is created summing of the support for each pattern. Because
our study is aimed to predict the existence of a link, Boolean support (if support
is greater than 0 then 1, otherwise 0) is used instead of actual support when it’s
as target. Thus, count vectors of network nodes that we use to feed the machine
learning algorithm, are formed. The generated data is fed to classifiers (SVM,
NB, GLM, DT). To choose the machine learning algorithm, 10-fold cross vali-
dation is employed. After the machine learning algorithm that is chosen, 70% of
data is used for training and the rest of data is used in tests.

3.1 Choosing a Machine Learning Algorithm

In this experiment, we built a dataset from network nodes by converting an-
notation existence (or counts) as an integer vector. For instance, suppose that
{A, B, C, D} as the 4 annotations available in whole dataset, and node v is
assigned {A, C}, we build a feature vector for v as {A:1, B:0, C:1, D:0}. Then,
for each annotation, we build a learning set by choosing an annotation as target,
and omitting the target from the input set. For instance, for testing prediction
ability of whether v has annotation A, we convert its vector to {B:0, C:1, D:0}
by omitting A.

Table 3. Comparison table for machine learning algorithms using accuracy and lift

Algorithm
Average Ac-
curacy %

True Positive
Accuracy %

True Negative
Accuracy %

Lift Cumula-
tive

Support Vector Ma-
chine (SVM)

66.68 99.89 7.66 4.06

Naive Bayes (NB) 87.49 98.81 51.44 4.92

Generalized Linear
Model (GLM)

89.18 99.07 45.43 4.88

Decision Tree (DT) 89.91 99.26 38.39 4.43

246 B. Isikli, F.E. Sevilgen, and M. Kirac

Next, we build a dataset for every annotation in the network, and test pre-
diction accuracy via 10-fold cross validation. Then, we repeated this procedure
for 4 machine learning algorithms, and compared prediction accuracy metrics.
We observed that Generalized Linear Models and Decision Trees have higher
average accuracy in comparison with other two algorithms (i.e., Support Vector
Machines, and Naive Bayes). In addition, we observed a better lift curve for
GLM, hence we utilized GLM algorithm for the rest of the experiments.

3.2 Prediction Performance Comparison by Annotation Position

In this experiment, we observe how much prediction capability is supplemented
by the known annotations of a node (say vector t1), annotations of the neighbors
connected via incoming links (say vector i1), and annotations of the neighbors
connected via outgoing links (say vector o1). Finally we built 4 datasets to
compare prediction performance: t1, i1, o1, and c1=t1|><|i1|><|o1.

We observed (see Fig. 2) that, incoming links provide more prediction in-
formation than outgoing links. We computed that augmenting t1, i1, and o1
(i.e., dataset c1) provided only 11% improvement over using i1 alone, while
augmentation supplemented 27% improvement over o1. In addition, providing
neighborhood information boosted prediction performance by 362%.

Fig. 2. Impact of annotation position (node itself, or incoming or outgoing neighbors)
on prediction capability

3.3 Prediction Improvement by Increasing Pattern Complexity

In this experiment, we build feature vectors from annotations in the direct neigh-
borhood of nodes (i.e., node itself and its direct incoming and outgoing links).
We divide direct neighborhood annotation information into 3 distinct vectors.
1) Annotations of the node itself, namely t, 2) annotations of the node’s incom-
ing links, namely i, and 3) annotations of the nodes are outgoing links, namely
o. For each vector, we build feature sets by computing frequency of annotation
patterns. For example, if a node has three annotations, namely, A, B, and C,

Link and Annotation Prediction 247

we build the following feature vectors: {A, B, C} as length-1 patterns, {AB,
BC, AC} as length-2 patterns, and {ABC} as a length-3 pattern. We name fea-
ture vectors of node and its direct links by their corresponding pattern lengths.
For instance, t1, i1, and o1 correspond to length-1 pattern counts observed in a
node v, observed among the nodes pointing to v, and observed among the nodes
pointed by v, respectively. Similarly, t2, i2, and o2 represent length-2 patterns,
and t3, i3, and o3 represent length-3 patterns.

Different learning sets are considered to compute the impact of pattern lengths
in prediction capability:
c1=t1|><|i1|><|o1, c2=c1|><|t2|><|i2|><|o2, and c3=c2|><|t3|><|i3|><|o3,
where |><| is the joining operator.

In other words, all feature vectors is generated corresponding to patterns of
the same length together.

Note that, we omit all patterns that contain the target annotation from the
t1, t2, and t3 portions of the learning sets. For example, if we are attempting to
predict annotation A, and t2 vector of a node has patterns {AB, BC, AC}, we
omit {AB, AC} from t2, as such patterns already indicate the existence of A.

Predictive capability of c1, c2, and c3 datasets are presented in Fig. 3. An im-
provement of 8% is observed when length-2 patterns’ feature vectors are added,
and improvement is only 3.5% when length-3 patterns feature vectors added (ac-
cording to the lift values at the first quantile). We conclude that more complex
patterns in the feature vectors definitely improve prediction capability. However,
such improvement gets less significant while the complexity is increasing.

Fig. 3. Impact of pattern complexity on
prediction capability

Fig. 4. Impact of network neighborhood
radius on prediction capability

3.4 Prediction Information Coming from Indirect Neighbors

In this experiment, we study whether adding data from network neighborhoods
with larger radiuses supplement prediction capability. In other words, we first
build a feature vector using only the annotations from a node v (say, neighbor-
hood n0). Then we test with additional annotations coming from direct neighbors
of v (say, neighborhood n1 that is both incoming and outgoing neighbors). Next,
we increase radiuses to n2, n3, and n4 as well. In order to augment network

248 B. Isikli, F.E. Sevilgen, and M. Kirac

neighborhood annotations into a single vector, we inner join feature vectors of
each radius. For instance n3 means, self-annotations of node v (i.e., n0), joined
with annotation vector of direct neighbors of v (i.e., r1), joined with indirect
neighbors in distance 2 and 3 of v, namely r2 and r3: ni = n0 |><| r1 |><| . . .
|><| ri.

Note that we employ annotation patterns of length 1 for this experiment.
In this experiment, we observed that, annotations of a node and annotations of
direct neighbors provide the most of the prediction power. Radiuses 2 and higher
do not bring additional prediction capability worth the computational effort (see
Fig. 4). Lift improvement at the first quantile for n3 over n2 is 1.7%, and n2 over
n1 is 5.8%. For the second quantile, improvement for n3 over n2 is 1%, and n2
over n1 is 1.04%.

4 Conclusions

In this paper, we proposed a methodology for converting network links into net-
work annotations, and predicting missing links and annotations. Our approach
is scalable in the sense that network data is preprocessed into a dense and simple
feature vector before consumed by complicated machine learning algorithms. We
observed in our experimental evaluation that augmenting network-based features
to a simple correlation-based prediction algorithm provides 11-27% improvement
in prediction accuracy. We plan to extend our work by evaluating use of more
complex patterns, and evaluating scalability tradeoffs of those.

Acknowledgments. We would like to thank Zeki Erdem for his comments and
support during the development of this work.

References

1. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction
of missing links in networks. Nature 453(7191), 98–101 (2008)

2. Goldberg, D., Roth, F.: Assessing experimentally derived interactions in a small
world. Proc. Natl. Acad. Sci. U.S.A. (2003)

3. Golub, B., Jackson, M.O.: How homophily affects the speed of learning and best-
response dynamics. Quarterly Journal of Economics (2012)

4. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: WTF: The Who
to Follow Service at Twitter. In: Proceedings of the 22nd International Conference
on World Wide Web, WWW 2013, pp. 505–514 (2013)

5. Kirac, M., Ozsoyoglu, G., Yang, J.: Annotating proteins by mining protein inter-
action networks. Bioinformatics 22(14) (2008)

6. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a Social Network or a
News Media? In: Proceedings of the 19th International Conference on World Wide
Web, WWW 2010, pp. 591–600 (2010)

7. Lee, D.: Document ranking and the vector-space model. IEEE Computer Soci-
ety 14(2) (1997)

Link and Annotation Prediction 249

8. Lee, R., Sumiya, K.: Measuring geographical regularities of crowd behaviors for
twitter-based geo-social event detection. In: LBSN (2010)

9. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks.
In: LinkKDD (2004)

10. Milenova, B., Yarmus, J., Campos, M.: SVM in Oracle Database 10g: Removing
the Barriers to Widespread Adoption of Support Vector Machines. In: Very Large
Databases, VLDB (2005)

11. Pennacchiotti, M., Popescu, A.M.: A machine learning approach to twitter user
classification. In: AAAI Conference on Weblogs and Social Media (2011)

12. Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Magazine 29(3) (2008)

13. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data.
In: Proceeding of Neural Information Processing Systems (2003)

14. Twitter Inc.: Twitter rest api, https://dev.twitter.com/docs/api
15. Zhou, T., Lu, L., Zhang, Y.C.: Predicting missing links via local information. The

European Physical Journal B 71(4) (2009)

https://dev.twitter.com/docs/api

	Link and Annotation Prediction Using Topology
and Feature Structure in Large Scale Social
Networks

	1 Introduction
	2 Methods and Algorithms
	3 Experimental Results
	3.1 Choosing a Machine Learning Algorithm
	3.2 Prediction Performance Comparison by Annotation Position
	3.3 Prediction Improvement by Increasing Pattern Complexity
	3.4 Prediction Information Coming from Indirect Neighbors

	4 Conclusions
	References

