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Abstract—The time- and geo-coordinates associated with a
sequence of tweets manifest the spatial-temporal movements of
people in real life. This paper aims to analyze such movements
to predict the next location of an individual based on the
observations of his mobility behavior over some period of time
and the recent locations that he has visited. To this end, we
defined a prediction methodology based on a set of spatio-
temporal features characterizing locations and movements among
them. We then combined the features in a supervised learning
approach based on M5 model trees. The experimental results
obtained by using a real-world dataset show that the supervised
method is effective in predicting the users next places achieving
a remarkable accuracy.

Keywords-Twitter, next-place prediction, spatio-temporal pat-
terns.

I. INTRODUCTION

Social media become very popular in recent years and is
receiving an always increasing attention from the research
community as through the user-generated data it embeds pre-
cious information concerning human dynamics and behaviors
within urban context. The ability to associate spatial context to
social posts is a popular feature of the most used on line social
networks. Facebook and Twitter exploit the GPS readings
of users phones to tag user posts, photos and videos with
geographical coordinates.

According to this view, people travelling and visiting a
sequence of locations generate many trajectories in the form
of geo-tagged tweets. The time- and geo-references associ-
ated with a sequence of tweets manifest the spatial-temporal
movements of Twitter users. This paper aims to analyze such
movements to predict the next location visited from a target
location based on the observations of users’ mobility behavior
over some period of time and the recent locations that have
been visited from there.

We address the next place prediction problem as a ranking
task. The aim is to rank the set of locations so that the next
location to be visited will be ranked at the highest possible
position in the list. To rank locations we propose a method-
ology based on a set of spatio-temporal prediction features
characterizing the locations and the interactions among them.
Specifically, two models are proposed. One model exploits
the individual features for the prediction. The other one
combines the features in a supervised learning framework
based on decision tree models to predict future locations. The
experimental evaluation performed on a real-word dataset of

tweets shows the effectiveness of the proposed approach, with
accuracy values of up to 0.90 for the supervised model.

The rest of the paper is organized as follows. Section II
overviews related works. Section III describes the reference
dataset and the proposed data model. Section IV presents the
proposed approach to next-place prediction, introducing the
prediction features. The experimental evaluation performed
on a real-word dataset of tweets collected in London city is
reported in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Researchers analyze human mobility patterns to improve
location prediction services, and therefore exploit their poten-
tial power on various applications such as mobile marketing,
traffic planning, and disaster relief [4].

Many studies tackle the problems of predicting the next
location where a mobile user moves to. Personal-based pre-
diction [15], [7], [16] and general-based prediction [12] are
two approaches often adopted in this problem domain. The
personal-based prediction approach considers movement be-
havior of each individual as independent and thus uses only
the movements of an individual user to predict his/her next
location. On the contrary, the general-based prediction makes
a prediction based on the common movement behavior of
general mobile users.

Researchers have investigated many explanatory variables
for next-place prediction, including cell phone data usage vis-
iting frequency and contextual information from smart phone
sensors. Also, with the rapid growth of location-based social
networks (LBSN), researchers have used check-in patterns
to predict the next check-in. Current research on location
prediction in LBSNs mainly focuses on two problems: 1)
predicting a users location at any time, including predicting
a users home location [2], [13], [1], [14]; 2) predicting the
location of each tweet [8], [10].

A variety of algorithms for next place prediction have been
proposed, but most focus on classification [13], Markov-based
models [3], [5], and extraction of both raw trajectories [9] and
semantic trajectories [17], [18].

[11] presents an algorithm for predicting the home location
of Twitter users. It builds a set of different classifiers, such
as statistical classifiers using words, hashtags or place names
of tweets and heuristics classifiers using the frequency of
place names or Foursquare check-ins, and then creates an
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ensemble of the classifiers to improve the prediction accuracy.
In contrast, the goal of our work is quite different and
as we aim to predict the next location and not just home
locations considering more about a users moving trajectories
and introducing a set of different spatio-temporal features
about the locations and without using the text in the tweets.

Chang et al. [1] utilized logistic regression model to com-
bine a set of features extracted from Facebook data. The
features include a users previous check-ins, users friends
check-ins, demographic data, distance of place to users usual
location, etc. Their results demonstrated that the number of
previous check-ins by the user is a strong predictor, and also
previous check-ins made by friends and the age of the user
are good features for prediction.

In [7], Jeung et al. propose an approach which predicts
future locations of a user by combining predefined motion
functions, i.e., linear or non-linear models that capture object
movements as sophisticated mathematical formulas, with the
movement patterns of the user, extracted by a modified version
of the Apriori algorithm. In [15], Yavas et al. mine the
movement patterns of an individual user to form association
rules and use these rules to make location prediction. Addi-
tionally, they consider the support and confidence in selecting
the association rules for making predictions. In [16], Ye et
al. propose a novel pattern, called Individual Life Pattern,
which is mined form individual trajectory data, and they uses
such pattern to describe and model the mobile users periodic
behaviors.

Ying et al.[17] integrate semantic information about the
places visited by an individual in addition to its location
data to enhance the accuracy of the prediction about his
future location. The approach relies on the notion of semantic
trajectories, which represents the mobility of an individual as a
sequence of visited places tagged with semantic information.
To predict the next location based on semantic trajectories,
the authors have developed a framework called SemanPredict.
The online prediction module is responsible for matching the
current trajectory of a user with the closest trajectory in the
database by relying on the geographical and semantic features.

The work more similar to our approach is the one of Noulas
et al. [13]. This work predicts the next place in a city that
the user will visit, proposing a set of features that exploit
information on transitions between types of places, mobility
flows between venues, and spatio-temporal characteristics of
user check-in patterns. They combining all features in two
supervised learning models, based on linear regression and M5
model trees, resulting in a higher overall prediction accuracy.

Summarizing, the proposed algorithm differs from the ap-
proaches of this category as we aim to infer, given a location,
the next location that could be visited from there, whereas in
the above approaches the focus is on the user, that is given a
user what will be his next location.

III. TWITTER DATASET AND DATA MODEL

The geo-located data mined in this work is a dataset of
tweets tagged with GPS location within the boundaries of

the city of London, one of the top three cities by number
of tweets1. Numerically speaking, we consider a Twitter
dataset of 7,424,112 tweets issued by 292,195 mobile users
in 6,098,148 distinct locations, during a period of six month
started in June 2013 and ended in November 2013. We
built a multi-threaded crawler to access the Twitter Streaming
API. The crawler collects the tweets filtered by location and
processes the results to obtain a dataset in which each entry
is a tweet that includes the ID of the user who created the
tweet, the timestamp and the GPS coordinates of the tweet.
The dataset represents a sequence of daily snapshots, with an
average number of tweets per day greater than 40,000.

Definition 1: Geo-tagged tweet. A geo-tagged tweet
tw ∈ TW is characterized by the user u who tweeted, a
location l from where tw has been posted and a timestamp,
t, that is the time at which it has been posted. The location
is identified by a pair of geographic coordinates l = (x, y),
latitude and longitude, respectively. Accordingly, a geo-tagged
tweet can be defined as a triple tw = (u, l, t).

The data analysis reveals that the behaviour of the users
is very heterogeneous: note the long tail of the probability
distribution functions (PDF) both of the number of tweets
and of the time interval that elapses between successive users
tweets. Figure 1 (a) shows the PDF of the number of tweets
per user in a month. Even if the volume of tweets per month is
very high, most of the users, the 78% post less than 10 tweets
per month. This may depend on the fact that many users are
tourists and then occasionally visit the city. 21% of users are
more active making more than 10 tweets but less than 100,
finally very few users, just 1%, post more than 100 tweets per
month.

A similar pattern arises when considering the time elapsed
between successive tweets. Figure 1 (b) shows that about 40%
of tweets are posted with high frequency (i.e. with an inter
time of 10 minutes). However the other 60% of inter tweet
time intervals have a length that varies in a very large range
of values . On te other hand, only 28% of tweets are posted
with a frequency greater than 3 hours.

We also observe the tweets frequency during the course of
the week. Figure 2 (a) shows that the tweets rate for each day
of the week has a periodic behaviour. Days exhibit a peak in
the evening and a dip at night time. The figure also highlights
some differences between week days and the weekend. In
particular, in weekends the volume of tweets is higher, mainly
during the morning and there is a peak at lunchtime. This is
more evident on Saturdays.

These patterns seem to mirror user behaviour: for instance,
during a week day, a user might spend morning and afternoon
at the workplace, taking a lunch break in a restaurant, while
in the evening he might go to the gym, to the cinema or stay
at home. In order to exploit these temporal patterns for our
classification task we divide the day into six different time
slots, as shown in Figure 2 (b). The time slots, are formally
specified as follows:

1http://semiocast.com/
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Figure 1. Probability Distribution Function of number of monthly tweets per user (a) and of the time elapsed between consecutive tweets (b).
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Figure 2. Tweets frequency during a week (a) and Temporal evolution of tweets frequency during the daily time slots(b).

Definition 2: TS is a finite set of timeslots with |TS| = 6.
Each ts ∈ TS is a time-object of varying time duration be-
longing to a day. TS = {N,EM,M,A,EE,E} where:

N = Night[12 : 00am − 05 : 59am];
EM = EarlyMorning[06 : 00am − 09 : 59am];
M = Morning[10 : 00am − 01 : 59pm];
A = Afternoon[02 : 00− 05 : 59pm];
EE = EarlyEvening[06 : 00pm − 08 : 59pm];
E = Evening[09 : 00pm− 11 : 59pm].

On the basis of this definition, we specify a mapping function
TS(tw) that associates the corresponding time slot to the
timestamp of a tweet.

IV. RANKING LOCATIONS TO PLACE PREDICTION

In this section we first formulate the next place prediction
problem and then introduce the prediction features.

A. Problem Formulation

We formalize the problem of predicting the next location
visited by users who move from a given place, based on the
observations of historic visits. Our goal is to identify the most
likely location that will be visited considering thousands of
candidate venues.

In this work we focus on the check-ins posted by twitter
users in the city of London. In particular, we refer only to
the geo-spatial references of such posts without considering
any other information contained in the tweets like the text.
Accordingly, our data model is defined as follows.

Given a set of geo-tagged tweets T W , we extract the set of
locations L visited from Twitter users U by only exploiting the
geographical coordinates. After having extracted the locations,
our aim is to predict the next location that users will visit from
a specific location by exploiting the spatial-temporal patterns
exhibited by users in that location.

Given the set of tweets T W currently posted in a city, for
each location l in the city, we aim to infer the next location

visited from there among a finite set of locations L.

We constraints the candidate venues to the set of locations L
in the city from where a significant number of tweets have
been posted.

We formulate the next-location prediction problem as a
ranking task. Our aim is to rank the set of locations so that
the next location to be visited will be ranked at the highest
possible position in the list. Specifically, given a location l ∈ L,
we aim to predict the most likely location k ∈ L that will be
visited next. We address this problem as a ranking problem
where k is chosen from a set of candidate places ranked based
on the prediction features. Each feature computes a score for
each candidate venue k, which is used to obtain a ranked list
of locations R. Each ranked list is sorted in decreasing order
and the position of location k in R is denoted with rank(k).
Our purpose is that the future venue that will be visited is
highly ranked by the prediction algorithms. We also compute
the ground truth ranked list Ṙ on the basis of the historical
movements between the locations under predictions.

B. Prediction features
The proposed features characterize locations in terms of

spatial-temporal patterns, and also in terms of mobility in-
teractions among them.

The features identified are listed below.
Number of tweets. This feature represents the number of

tweets posted by users in location k.

TWk = |tw = (u, k, t) ∈ TW| (1)

Number of users. Knowing the number of people who visit
a place is indicative of its popularity. The number of visitors of
a location k, is the number of distinct users who have posted
at least one tweet while at the location.

Uk = |u ∈ U : TWk,u 6= ∅| (2)

where TWk,u is the set of tweets post in k by u.
Night Location. This feature is proposed to separate the

locations visited mostly at night time from those visited during
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the day. This is formally achieved by measuring the ratio of
night tweets versus the total number of tweets.

nightk =
|tw = (u, k, t) ∈ TW : t ∈ EE ∨ t ∈ E ∨ t ∈ N|

|TWk|
(3)

Weekend Location. Likewise, we aim to partition the loca-
tions visited mostly during the weekend from those visited
during weekdays. This is formally achieved by measuring the
ratio of weekend tweets versus the total number of tweets.

weekendk =
|tw = (u, k, t) ∈ TW : t ∈ Sat ∨ t ∈ Sun|

TWk
(4)

Tweets Entropy. This feature tells whether users tend to
tweet regularly in a location k, describing the distribution of its
tweets across the users. For this purpose we use the Shannon
Entropy:

h(xu) = −
n∑

u=1

p(xu)log p(xu),

where p(xu) = f(k, u) =
|TWk,u|

|TWk|

(5)

The features listed in the following exploit past user move-
ments between each location under prediction k and the target
venue l. Exploiting this class of features we can answer the
following questions: (1) how many movements are there from
l to k (2) how far is l from k? (3) how long does it take from
l to k?

To model interactions among couple of locations, we intro-
duced the following definition of path:

Definition 3: A path pl,k is a movement that starts in
location l and ends in location k as expressed by the sequence
of tweets posted from such locations:

pl,k = twl1,t1 −→ twl2,t2 : l1 = l ∧ l2 = k ∧ t1 < t2
Number of travels. The feature measures the number of

travels along a path between two locations. It is formally
defined as:

TRl,k = |pl,k| (6)

Space. The feature represents the geographic distance be-
tween l and k, computed by the Haversine formula.

spacel,k = Hdist(l, k) (7)

Time. The feature represents the average time to move
directly from l to k.

timel,k =

∑
∀pl,k

tk,first − tl,last

|pl,k|
(8)

where tl,last is the timestamp of the last tweet posted in l, and
tk,first is the timestamp of the first tweet posted in k.

V. EXPERIMENTAL EVALUATION

In this section we present the experimental evaluation
performed to assess the effectiveness and accuracy of the
proposed prediction strategy. Specifically, we first evaluate
the predictive power of each feature, then we combined the
most performing features in a supervised classifier to asses if
prediction accuracy can be improved.

A. Metrics
We use two metrics for the evaluation of the ranking func-

tions, the Percentile Rank (PR), and the prediction accuracy
(Accuracy).

The Percentile Rank (PR) [6] of a location l is defined as
follows:

PR(l) =
|L| − rank(l) + 1

|L|
(9)

where rank(l) is the ranking obtained for location l by
exploiting one of the prediction features.

The PR score is equal to 1 when the location that will be
visited next is ranked first and it linearly decreases to 0 as
the correct location is positioned at the bottom of the list.
We evaluate a scenario where we generate for each location
an ordered list of candidate locations, sorted from the one
predicted to be most likely next visited till the least visited
one. Specifically, we generate a ranking list for each of the
considered features.

The Average Percentile Rank (APR) is obtained by averag-
ing across all user check-in predictions.

The Accuracy@X allows to compare the different ranking
strategies in terms of their prediction accuracy when using
different prediction list sizes X. In this case, we successfully
predict the next location if we rank a location in the top-
X places. The average accuracy (Accuracy@X) measures the
fraction of times that the future next location in the predicted
list R is at the top-X of the the ground truth ranked list Ṙ.

B. Individual Feature Performance
We studied the predictive power of each feature: we first

compute predictive scores for every pair of locations in the
test set and then we rank these candidate locations according
to their score.

Figure 3 shows the prediction accuracy achieved by each
feature with the prediction list size. As can be noted from the
graph, the number of travels feature outperforms all the others
achieving an accuracy of about 0.66 for a list size of 40. The
features accounting location popularity as number of tweets
and the number of users achieve a good accuracy reaching 0.56
and 0.58, respectively. The entropy, space and time features
are performing very similarly reaching a maximun value of
about 0.30. Finally, the weekend and night features achieve a
very low accuracy resulting, thus, to not be effective in terms
of prediction.

Figure 4 shows the APR results for all the prediction
features. For all the features the score is significantly better
than the one achieved in terms of accuracy. Anyhow, for most
of the features such scores are slightly higher than the Random
Baseline (which would achieve 0.50), ranging from 0.50 to
0.65. They are an exception the features number of travels,
number of users, and number of tweets, with number of travels
achieving the highest score of about 0.80.

C. Supervised Learning Approach
In order to detect if a combination of factors improve

predictions, we combine the individual features in a supervised
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learning framework. We aim to obtain at least the same
prediction accuracy of the best performing individual features.
We use two algorithms, the M5 decision trees [14] and Linear
Regression. We employ the implementations available in the
popular machine learning framework WEKA.

To predict the next location we build supervised models
for each target location on the basis of historic trajectories.
More specifically, for each candidate location we build a
training example which encodes the values of the features.
This feature vector corresponds to a positive label if there is
at least a correspondence recorded in the historic data between
that candidate location and the target one, otherwise the label
is negative. In this way, we train the model to distinguish
between places that could be visited from a location, and
places that will not be visited.

The supervised learning algorithms compute a regression
scores, on the basis of which we rank the candidate venues,
reducing the regression problem to a ranking one.

We compared the supervised approach against the individual
prediction features. For this comparison we used the most
performing prediction features as resulting from the above
experimental evaluation. Figure 5 shows that supervised ap-
proaches outperform single features predictions. Specifically,
M5P exhibits the best performance, achieving an accuracy
that is largely higher compared to all the feature prediction
approaches reaching a maximum of about 0.90. From the
graph one can also note the linear regression is outperformed

by all the other approaches till a list size of 5, while for
larger list size it achieves a good accuracy that reaches a
considerable peak of 0.83 when the list size is 40. According to
the previous results, number of travels is the most performing
among individual features.
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Figure 6 shows that also in terms of APR scores, M5P
outperforms the other models with an APR of 0.90 versus the
0.79 achieved by the linear regression model which achieves
the same score of the number of travels feature that again is
the best performing among the individual prediction feature
strategies.
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VI. CONCLUSION

The paper proposed a methodology to predict next location
by exploiting Twitter data. The prediction methodology is
based on a set of spatio-temporal features characterizing loca-
tions and movements among them such as historical visits to
locations, geographic distance between them, their popularity.
The features have been also combined in a supervised learning
approach based on M5 model trees. We have analysed a dataset
of tweets collected in London city during January 2013.
The experimental results show that the supervised method
is effective in predicting the users next places achieving a
remarkable accuracy.
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