
SPECIAL SECTION ON BIG DATA ANALYTICS IN INTERNET OF THINGS AND CYBER-PHYSICAL
SYSTEMS

Received April 1, 2017, accepted May 15, 2017, date of publication June 1, 2017, date of current version July 3, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2710540

Statistical Twitter Spam Detection Demystified:
Performance, Stability and Scalability
GUANJUN LIN1, NAN SUN1, SURYA NEPAL2, JUN ZHANG1, (Member, IEEE),
YANG XIANG3, (Senior Member, IEEE), AND HOUCINE HASSAN4, (Member, IEEE)
1School of Information Technology, Deakin University, Geelong, VIC 3216, Australia
2Data61, CSIRO, Melbourne, VIC 3008, Australia
3School of Information Technology, Deakin University, Melbourne, VIC 3125, Australia
4Department of Computer Engineering, Universitat Politècnica de València, 46022 Valencia, Spain

Corresponding author: Jun Zhang (jun.zhang@deakin.edu.au)

This work was supported by the National Natural Science Foundation of China under Grant 61401371. The work of G. Lin was supported
by the Australian Government Research Training Program Scholarship.

ABSTRACT With the trend that the Internet is becomingmore accessible and our devices beingmoremobile,
people are spending an increasing amount of time on social networks. However, due to the popularity of
online social networks, cyber criminals are spamming on these platforms for potential victims. The spams
lure users to external phishing sites or malware downloads, which has become a huge issue for online safety
and undermined user experience. Nevertheless, the current solutions fail to detect Twitter spams precisely
and effectively. In this paper, we compared the performance of a wide range of mainstreammachine learning
algorithms, aiming to identify the ones offering satisfactory detection performance and stability based on a
large amount of ground truth data. With the goal of achieving real-time Twitter spam detection capability,
we further evaluated the algorithms in terms of the scalability. The performance study evaluates the detection
accuracy, the true/false positive rate and the F-measure; the stability examines how stable the algorithms
perform using randomly selected training samples of different sizes. The scalability aims to better understand
the impact of the parallel computing environment on the reduction of the training/testing time of machine
learning algorithms.

INDEX TERMS Machine learning, Twitter, spam detection, parallel computing, scalability.

I. INTRODUCTION
Online social networks (OSNs), such as Twitter, Facebook
and LinkedIn, have had significant impact on our life and
have reshaped the way we socialize and communicate.
Thanks to the OSNs, we are able to get in touch with our
friends and family anywhere, anytime. Take Twitter for exam-
ple, we are able to post messages with pictures, videos, text
and follow others whom we are interested in and care for.
So far, Twitter has gained tremendous popularity and have
had up to 313 million active users [24].

However, with the increasing number of users on Twitter,
the spamming activities are growing as well. Twitter spams
usually refer to tweets containing advertisements, drugs sales
or messages redirecting users to external malicious links
including phishing or malware downloads, etc. [1]. Spams
on Twitter not only affect the online social experience,
but also threatens the safety of cyberspace. For example,
in September 2014, New Zealand’s network was melt down

due to a malware downloading spam [18], the result of which
signaled the alarm of Twitter spams. Therefore, there is
an urgent need to effectively combat the spread of spams.
Twitter has applied rules to regulate users’ behaviors such
as restricting users from sending duplicate contents, from
mentioning other users repeatedly or from posting URL-only
contents [5]. Meanwhile, the spamming issues have attracted
the attention of the research community. Researchers
have put many efforts to improve Twitter spam detection
efficiency and accuracy by proposing various novel
approaches [1], [23], [25], [28], [32].

To the best of our knowledge, there are three major types
of feature-related solutions for Twitter spam detection. The
first type is based on the features of user account and
tweets content, such as account age, the number of followers/
followings and the number of URLs contained in the tweet,
etc. These features can be directly extracted from tweets with
little or without computation. Based on the observed facts

11142
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

that the content-based features could be fabricated easily.
Other researchers proposed to use robust features derived
from the social graph [31], which is the second type of
solution. Yang et al. [31] proposed a spam detection
mechanism based on the graph-based features, known as
Local Clustering Co-efficiency and Betweenness Centrality.
Song et al. [23] present a directed graph model to explore
the relationship of senders and receivers. Nevertheless, graph-
based features are empirically difficult to collect, because
generating a large social/relationship graph can be time and
resource consuming considering that a user may interact with
a large but unpredictable number of users. The third type of
solution focuses on tweets with URLs. According to [34],
domains and IP blacklists are used to filter tweets containing
malicious URLs. Both [26] and [29] applied the URLs based
features for Twitter spam detection.

However, there is a lack of comparative work bench-
marking the performance of machine learning algorithms on
Twitter spam detection to demonstrate the applicability and
feasibility of these machine learning approaches in the real-
world scenarios. In this paper, we bridge the gap by con-
ducting an empirical study of 9 commonly-used machine
learning algorithms to evaluate the detection performance
in terms of detection accuracy, the true/false positive rate
(TPR/FPR) and the f-measure, as well as the detection sta-
bility based on 200k training samples.1 We simulated the
realistic-like condition by using the unbalanced ratio of spam
and non-spam datasets for performance evaluation of the
selected algorithms. Additionally, we study the scalability
of different algorithms to examine the efficiency of running
on parallel computing environment. Based on the experi-
ments, we explore and discuss the feasibility of achieving
real-time detection capability considering various applicable
scenarios.2 In summary, the contributions of this paper are the
following:
• The detection performance of 9 mainstream algorithms
are compared for identifying the best-performed algo-
rithms on our light-weight feature datasets. We found
that two decision tree based algorithms – Random For-
est and C5.0 achieved the best performance in various
conditions.

• The stability of each algorithm was studied by repeat-
ing the experiments with different sizes of datasets
to examine the performance fluctuation, aiming to
find a robust algorithm in terms of performance. Our
experiment demonstrated that Boosted Logistic Regres-
sion (BLR) achieved a relatively stable detection per-
formance regardless of the size of training samples,
and tree-based algorithms such as random forest and
C5.0 performed stably under the situation where training
samples are randomly selected.

1Part of this dataset is publicly available in our website: http://
nsclab.org/nsclab/resources/. For a complete dataset, please contact us.

2A real-time Twitter spam detection prototype system was imple-
mented based on the experiments, the source code can be found
at:https://github.com/danielLin1986d/RTTSD_prototype.git

• The scalability of selected algorithms is analyzed by
measuring how the algorithms’ training time varies
when the number of hosting CPU cores doubled
(1, 2, 4, 8, 16 and 32) each time. Empirical results show
that deep learning scaled up the best, capable of achiev-
ing real-time detection giving sufficient computational
resources.

• A superlinear speedup was achieved by deep learning
on our datasets. The last subsection of section VII is an
attempt to explain this finding.

The rest of this paper is organized as follows. The related
work is presented in section II. Section III describes the
algorithms selection procedure. In section IV, we address
our data collection procedure and the light-weight feature
extraction approach. Section V introduces how the experi-
ments are setup and evaluated. Then, the results and findings
are presented in Section VI, followed by the analysis and
discussion of the experiment outcomes and the feasibility of
real-time spam detection. The conclusions and future work
are in section VIII.

II. RELATED WORK
Twitter spam detection is an important topic in social net-
work security. Many pioneer researchers have been devoted
to the study of spam detection on the OSNs. However, due
to the constant adaptation to the spam detection techniques,
spammers are still active on the OSNs. Hence, to combat
the spread of spams, a series of methods and solutions have
been proposed based on different types of features. Some
works relied on the user profile features and message content
features to identify spams; some proposed using graph-based
features, typically the distance and connectivity of a social
graph; and some others relied on embedded URLs as the
means of spam detection features.

The user profile and message content based features can be
extracted with little computation, thus, it is practical to collect
a large amount of account information and sample messages
for analysis and research. Chen et al. [5] used the account
and content features, such as the time period an account has
existed, the number of follower and following, the number of
hashtags and URLs embedded in the message to detect the
spam tweets. Apart from considering the account and content
features, [1] and [25] also takes the user behavior features into
account. In [1], more detailed behavior-related features were
considered, such as existence of spamwords on the users nick
name, the posting frequency and the number of tweets posted
per day and per week.

Although the profile and content features could be col-
lected conveniently, it is possible to fabricate and modify
these features to escape detection [23]. Hence, some improve-
ment attempts to advocate using graph-based features for
identifying spams. In [23], Song et al. proposed a novel spam
filtering system, relying on the sender-receiver relationships.
Based on the analysis of the distance and connectivity of
the relation graph, the system predicts whether an account is
spammer or not. Their method achieved a very high accuracy

VOLUME 5, 2017 11143



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

but was not applicable in real-time detection for its unsat-
isfactory computational performance and some unrealistic
assumptions. Yang et al. [32] designed some robust features
such as graph and neighbor-based features to cope with the
spammers who are constantly evolving their techniques to
evade the detection. They proved that their approach achieved
higher detection rate and lower false positive rate compared
with some previous works. Wang [28] combined graph-based
and content-based features to facilitate the spam filtering.

Although detecting twitter spam using social graph fea-
tures could achieve decent performance, collecting these fea-
tures can be time-consuming because the Twitter user graph is
huge and complex. Due to not being practical to apply social
graph based features to a real-time spam detection system,
there are some works using embedded URLs in tweets for
spam detection on Twitter under the assumption that all spam
tweets contain URLs. In [26], Thomas et al. developed the
Monarch which is a real-time system for detecting spams by
crawling URLs. They used features extracted from URLs, for
example, the Domain token, the path tokens and the URLs
query parameters as detection criteria. Moreover, in [29],
Wang et al. focused on the detection of spam short URLs.
They collected both the short URLs and the click traffic data
for characterization of the short URL spammers. Based on
the click traffic data, they classified the tweets with URLs
into spams and non-spams, and achieved more than 90% of
accuracy.

TABLE 1. 5 categories of the chosen algorithms.

III. ALGORITHMS FOR SPAM DETECTION
Machine learning techniques, which offer computers the
capability of learning by extracting or filtering useful infor-
mation or patterns from raw data, have been widely applied
in diverse fields [6]. A variety of different machine learn-
ing algorithms have been developed and improved for tar-
geting diverse application scenarios and data types. In this
paper, we choose 9 supervised machine learning algorithms
for spam/non-spam tweets classification. The selected algo-
rithms can be categorized into 5 groups as shown in Table 1.

The reasons that we choose these algorithms are as
follows:

• The selected algorithms are widely used both in indus-
trial and academic fields. We would like to investigate

how well these algorithms perform with respect to our
tweets’ datasets on various conditions.

• To achieve real-time detection, we used only 13 fea-
tures. Therefore, kNN-based algorithms was chosen
due to their suitability for data samples with relatively
small number of dimensions [10]. Apart from kNN, we
also selected k-kNN [12] which is an improved kNN
algorithm. It introduces a weighting mechanism for
measuring the nearest neighbors based on their simi-
larity to an unclassified sample. So the probability of
a newly observed sample belonging to a class is influ-
enced or weighted by its similarity to the samples in the
training set.

• Decision tree-based and boosting algorithms are two
main categories of popular machine learning tools which
have gained tremendous attentions in data mining and
statistical fields. Among these algorithms, random for-
est [2] and C5.0 [19] are selected as the representatives
of the decision tree-based algorithms, and stochastic gra-
dient boostingmachine (GBM) [9] and Boosted Logistic
Regression (BLR) [8] are chosen to represent the boost-
ing family.

• Among the Bayesian algorithms, the Nave Bayes, being
a classic probabilistic classifier which builds on the
assumption that all features of data are probabilistically
independent [3], is selected as a candidate for our exper-
iments.

• The neural network and deep learning [15] (imple-
mented using the deep neural networks architecture) are
chosen in contrast to each other. At the time of writ-
ing, deep learning is the most popular machine learning
algorithm which has achieved practical success in the
fields of computer vision, speech recognition and natural
language processing [16].

IV. DATA COLLECTION AND FEATURE SELECTION
A. DATA COLLECTION
1) COLLECTION PROCEDURE
As the continuation and extension of our work [5], we used
the same data set as the one described in the previous work.
Totally, we collected 600 million tweets, all of which con-
tain URLs. Based on [7] and [35] the majority of spam
tweets embedded URLs to attract victims with malicious
purposes. Therefore, our research builds on the assump-
tion that all spam tweets contain URLs with the pur-
pose of luring users to external phishing sites or malware
downloading.

2) GROUND TRUTH
With the help of Trend Micros Web Reputation Service [17],
we were able to identify 6.5 million spams tweets whose
URLs are identified as malicious. In some works, researchers
had to label spam tweets manually based on Blacklisting
service, such as Google SafeBrowsing. Thanks to Trend
Micros WRS, it could automatically check whether the
URLs embedded in tweets are malicious by using its large

11144 VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

TABLE 2. 13 extracted features and feature descriptions.

dataset of URL reputation records. We define tweets with
malicious URLs as spams. Due to the Trend Micros WRS
devoting to collecting latest URLs and maintaining the
database of URLs, the URLs reputation list is up-to-date,
which ensures the accuracy of labelling. We identified
6.5 million spam from 600 million tweets, and we have
obtained up to 30 million labelled tweets data in total to form
our ground truth dataset. Our experiment data was randomly
selected from this labelled dataset.

B. FEATURE SELECTION
1) LIGHT-WEIGHT STATISTICAL FEATURES
It is a non-trivial task to select and decide how many features
are needed for training a model that guarantees a satisfy-
ing prediction capability while maintaining acceptable size
of feature set to ensure prediction efficiency. Namely, it is
important to trade off between the number of features and the
predicting power of the trained model. In this paper, we have
chosen 13 features from our randomly selected ground truth
data as summarized in Table 2.We applied the same approach
as described in [5] for selecting and extracting features from
our ground truth dataset, because these 13 features can be
easily extracted from the tweets collected through Twitter’s
Public Streaming API. Hence, little computation effort was
required. Besides, using small size features for spam detec-
tion helps to reduce the computational complexity during
the model training and testing processes, which makes real-
time spam detection achievable even with massive training/
testing data.

The extracted features can be categorized into two groups:
user profile-based features and tweet content-based features.
The user profile-based features include: the time period of
the account has existed, the number of followers, the number
of following, the number of favorites this user received, the
number of lists user is a member of and the number of tweets
this user sent. These 6 features depict the behaviors of the user
account. The tweet content-based features include: the num-
ber of this tweet has been retweeted, the number of favorites
this tweet received, the number of hashtags, the number
of times this tweet being mentioned, the number of URLs
included, the number of characters and the number of digits

in this tweet. We believe that if an account is controlled by
a spammer, the tweets sent by this account would be spams.
However, if an account initially belonged to a legitimate user
and then was comprised by a spammer, the account could
send out normal tweets and spams. Therefore, it is necessary
to analyze both the user behaviors features and the tweet
content features for deciding spams and non-spams.

V. ENVIRONMENT AND EVALUATION METRICS
A. EXPERIMENT ENVIRONMENT AND
EXPERIMENT SETUP
1) HARDWARE SPECIFICATION
We conducted our experiments on a workstation equipped
with two Physical Intel(R) Xeon(R) CPU E5-2690 v3
2.60GHzCPUs, totally providing 48 logical CPU cores, capa-
ble of offering a small scale of parallelism. The workstation
offers 64 GB memory and 3.5 TB storage which satisfies our
required experiment conditions.

2) SOFTWARE TOOLS AND PLATFORM
Our software environment was built on Ubuntu Server
16.04 LTS.We used R programming language (version 3.2.3)
with caret package (version 6.0-68) [13] and doParallel pack-
age (version 1.0.10) [30] to perform our experiments. The
caret package encapsulates a variety of machine learning
algorithms and tools. It acts like an API, allowing users
to invoke different algorithms and tools using a standard-
ized syntax and format [14]. To call a certain algorithm for
training, a user needs to specify ‘‘method’’ parameter when
invoking the train function. In our experiment, we called eight
selected algorithms provided by ‘‘caret’’ package.3 Table 3
shows the ‘‘method’’ parameter we used for each algorithm
we called in our experiment.

The default resampling scheme provided by the train
function of the ‘‘caret’’ package is bootstrap [14]. In our
experiment, we used 10-fold cross-validation by spec-
ifying ‘‘repeatedcv’’ parameter equals 1 (performing
10-fold cross-validation 1 time) during the classifier training
process.

3We called the algorithms using the default settings without specifically
tuning the parameters.

VOLUME 5, 2017 11145



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

TABLE 3. The ‘‘method’’ parameter specified using ‘‘caret’’
package in experiments.

By default, all selected algorithms invoked by the ‘‘caret’’
package can only utilize one CPU core. Therefore, the
doParallel package was used to enable the algorithms to
be executed in parallel to take advantage of multiple CPU
cores [30]. Specifically, the doParallel package acts as a ‘‘par-
allel backend’’ to execute the foreach loops in parallel. It also
allows users to specify how many CPU cores can be used
simultaneously.

We used a powerful big data analytic tool called
H2O (version 3.8.3.3) [11] to implement deep learning algo-
rithm using the architecture of deep neural networks [4]. The
H2O is an open-source and web-based platform which allows
users to analyze big data with different built-in algorithms.
It also offers flexible deployment options enabling users to
specify the usage of computational resources such as the
number of CPU cores, the amount ofmemory, and the number
of computing nodes.

B. EVALUATION METRICS
This section addresses the metrics chosen for evaluating
the performance, stability and scalability of the selected
9 algorithms.

1) PERFORMANCE
The measure of performance is to use the accuracy, the true
positive rate (TPR), the false positive rate (FPR) and the
F-measure as metrics. The accuracy is the percentage of
correctly identified cases (both spams and non-spams) in the
total number of examined cases, which can be calculated
using equation (1) . The TPR a.k.a recall, indicates the ratio of
correctly identified spams to the total number of actual spams.
It can be calculated using equation (2). The FPR refers to the
proportion of non-spams incorrectly classified as spams in the
total number of actual non-spams, as equation (3) shows. The
precision is defined as the ratio of correctly classified spams
to the total number of tweets that are classified as spams,
as shown by the equation (4). Lastly, the F-measure a.k.a
F1 score or F-score, is another measurement of prediction
accuracy combining both the precision and recall. It can be
calculated by the equation (5).

Accuracy = TP+ TN/(TP+ TN + FP+ FN ) (1)

TPR = TP/(TP+ FN ) (2)

FPR = FP/(FP+ TN ) (3)

Precision = TP/(TP+ FP) (4)

F − measure = 2 ·
precision · recall
precision+ recall

(5)

With the same hardware configuration, we evaluate the per-
formance of each algorithm under various experiment con-
ditions using the above-mentioned metrics. Firstly, we used
different sizes of the training data ranging from 2k to 200k
as shown in the dataset 1,2 and 3 in TABLE 4. But for both
training and testing data, we kept the ratio of spams and non-
spams to be 1:1. For the amount of testing data, we used
100k spam and 100k non-spam (totally 200k) tweets to test
the performance of trained classifiers.

In reality, the number of spam and non-spam is not evenly
distributed. The spams only account for less than 5% of the
total number of tweets. In order to simulate the real scenario,
the ratio of non-spam to spam of the testing data is set to
19:1 (as shown in the datasets 4, 5 and 6 in Table 4). But
we kept the ratio of training data unchanged and still used 2k,
20k, 200k datasets to train all the classifiers.

2) STABILITY
The stability measures how stable each algorithm performs
in terms of detection accuracy. We apply the standard devi-
ation (SD) to quantify stability. When measuring the perfor-
mance for each algorithm, we repeated 10 times to examine
how the detection accuracy varies each time due to the ran-
dom selection of the training samples. Then, we studied how
different sizes of training data affects the accuracy of each
algorithm. By recording the accuracy of each algorithm for
10 times on various sizes of data, we calculated the standard
deviation value for every algorithm. A large SD value implies
the fluctuation in detection accuracy and instability of the
performance.

3) SCALABILITY
The scalability is used to evaluate how the algorithms scale
on the parallel environment which is a shared-memory multi-
processor workstation. The parallel implementation enables
algorithms tomake full use of multiple CPUs to accelerate the
calculation process by executing tasks on these CPUs simul-
taneously. To measure scalability,4 we use the term speedup
to quantify how much performance gain can be achieved by
a parallel algorithm compared with its sequential counter-
part [36] or compared with the parallel algorithm using one
process. There is a formula for calculating the speedup:

S(p) = T1/Tp

where S(p) is the speedup value, and p denotes the number
of processors used; T1 refers to the execution time needed
to run the parallel algorithm using a single processor; Tp is
the execution time needed to run the parallel algorithm using

4In this paper, we narrow down the discussion of scalability to the fix-size
problems.

11146 VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

TABLE 4. The training and testing datasets with different spam to non-spam ratios.

FIGURE 1. Detection Accuracy (%) of 9 Algorithms Using
Dataset 1, 2 and 3 with the ratio of spams and non-spams being 1:1.

p processors with the same problem size [27]. The analysis of
speedup trends helps to understand the relationship between
the performance gain (reflected as the decrease of execution
time) and the amount of computational resources involved.

VI. RESULTS AND ANALYSIS
A. PERFORMANCE
1) ACCURACY ON EVENLY DISTRIBUTED DATASETS
As shown in Fig.1, generally, a larger amount of training data
contributes to higher classification accuracy under the con-
dition that the testing data is evenly distributed. Specifically,
with the size of training data increasing from 2k to 20k, then
to 200k, the accuracy of all algorithms raises, except for BLR.
Noticeably, C5.0 and random forest achieved more than 90%
accuracy when trained with 200k tweets, which is the highest
accuracy observed among all. k-kNN gained the third highest
accuracy which was around 85% when trained with 200k
samples. As for GBM, Naive Bayes, Neural Network and
Deep Learning, once the size of training data reaches 20k,
there is no substantial increase observed in accuracy. How-
ever, for BLR, changing the size of training data exerts no
influence on its classification accuracy.

2) ACCURACY ON UNEVENLY DISTRIBUTED DATASETS
When using unevenly distributed datasets with 1:19 spam
to non-spam ratio, it is unexpected to see that the majority
of the selected algorithms did not experience a substantial

FIGURE 2. Detection Accuracy (%) of 9 Algorithms Using
Dataset 4, 5 and 6 with the ratio of spams and non-spams being 1:19.

decline regarding their detection accuracy, as illustrated in
Fig.2. Similarly, C5.0 and random forest gained more than
90% of accuracy, followed by k-kNN which was 85%. How-
ever, obvious drops of accuracy were seen on kNN and
Naive Bayes.

3) PERFORMANCE COMPARISON BETWEEN EVENLY
AND UNEVENLY DISTRIBUTED DATASETS
In this section, the impact of uneven ratio of spam to non-
spam on the detection performance is evaluated by comparing
the evenly distributed groups with the uneven distributed ones
(dataset 1 and 4 compared with dataset 3 and 6, please refer
to Table 4).

Fig. 3-(a) is the comparison of the FPR values of the
algorithms on Dataset 1 and 4. It shows that except for
Naive Bayes, there was no significant change of the FPR
values observed when the ratio of spam to non-spam was
uneven. For Naive Bayes, its FPR value dropped from 50%
to around 37% when using unevenly distributed testing data.
These differences seen in the FPR values were caused by the
randomly selected training datasets.

Similarly, Fig. 3-(b) shows that the two groups of TPR val-
ues varied slightly, apart from BLR and Naive Bayes.
For BLR, only 2% of drop was seen when using the uneven
ratio dataset. However, for Naive Bayes, there was approxi-
mate 8% of decline seen.

VOLUME 5, 2017 11147



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

FIGURE 3. Performance Comparison of All Algorithms on Dataset 1 VS 4.
(a) The FPR Values on Dataset 1 VS 4. (b) The TPR Values on Dataset 1
VS 4. (c) The F-measure Values on Dataset 1 VS 4.

For F-measure values, as illustrated on Fig. 3-(c), when
using 2k trained classifiers to run on the unevenly distributed
testing dataset, there was an substantial decrease observed
for all algorithms. Generally, the F-measure values of all
algorithms on Dataset 4 were less than half of the F-measure
values on Dataset 1. Especially, the F-measure of kNN was
60% when using the 1:1 spam to non-spam ratio of testing
data, but when using the 1:19 ratio testing data, it dropped
to around 14%. Likewise, there was an significant decline
seen on Naive Bayes. Comparatively, the decrease of the
F-measure values of C5.0 and Random Forest was not as

FIGURE 4. Performance Comparison of All Algorithms on Dataset 3 VS 6.
(a) The FPR Values on Dataset 3 VS 6. (b) The TPR Values on Dataset 3
VS 6. (c) The F-measure Values on Dataset 3 VS 6.

dramatical as that of other algorithms. For Random Forest,
the F-measure declined to half when using the unevenly
distributed testing dataset.

Although increasing the size of the training dataset to 200k
contributed to the decrease of the FPR values and the growth
of the TPR values as shown in Fig. 4-(a) and Fig. 4-(b),
there was still a substantial drop in the F-measure values
on the unevenly distributed testing samples. As addressed in
Fig. 4-(c), apart from C5.0 and Random Forest, the
F-measure values of the algorithms on unevenly distributed
dataset dropped to one third of the values on evenly

11148 VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

TABLE 5. The comparison of the confusion matrix of k-nearest neighbor on different spam to non-spam ratios.

distributed datasets. Particularly, for kNN and Naive Bayes,
the F-measure values of both algorithms dropped from around
70% to 20%, which is a 50% of decrease. But for C5.0 and
Random Forest, they only experienced approximate decrease
of 30%.

To figure out the reason of a substantial decline in the
F-measure values, we use the confusion matrix which is
one of our tests using k Nearest Neighbor as an example
to demonstrate the cause of the drop. Due to the F-measure
being the combination of recall and precision, we need to
evaluate both values.

Firstly, we check the TPR. As the Table 5 shows that for
kNN algorithm, when using the 2k training and 200k evenly
distributed testing dataset, 61042 spam tweets are correctly
classified, while 39020 spams were incorrectly classified as
non-spams. Hence, we had 61% of TPR. When using the
2k training and 200k unevenly distributed testing dataset,
although 6279 spam tweets had been correctly identified as
spams meaning that the algorithm had detected 62% of the
spams tweets, there were 3724 spams that had been incor-
rectly identified as non-spams. So, the TPR was round 62%
when using the uneven dataset, and there is only 1% of differ-
ence in TPR, which obviously is caused by the randomization
of training data selection.

Secondly, as Table 5 illustrated that when the spam to non-
spam ratio is equal (using dataset 1), there was 37558 of
the non-spams incorrectly classified as spams, resulting in a
precision of 62%. However, due to the dramatical increase
of non-spams, when using the 1:19 spam to non-spam ratio
dataset, there was 76298 non-spam incorrectly classified as
spams. Hence the precision dropped significantly to 7.6%.
Consequently, a significant drop in the precision value causes
the substantial decrease in the F-measure when using more
non-spams than spams.

Similarly, for other algorithms, due to the involvement of
more non-spam tweets in the testing datasets (19 times more
non-spams than spams), more number of the non-spam tweets
were wrongly put into the spam class, causing the F-measure
values to drop.

4) STABILITY
The stability reveals how the algorithms’ detection accuracy
are affected by the randomly selected testing and training
data, and the variation of the size of training data. The
Fig.5 shows a general performance stability distribution of
all algorithms on evenly distributed datasets during 10 times
repeated experiments. Generally, Random Forest, C5.0 and
GBM performed stably across 3 datasets. In contrast, Naive
Bayes and Deep Learning performed in an unstable manner,

FIGURE 5. The Comparison of Accuracy of The Standard Deviation of All
Algorithms with Evenly Distributed Dataset 1, 2 and 3.

especially when using the 2k and 200k training datasets.
Specifically, when trained using 20k training dataset, all algo-
rithms showed a relatively stable performance compared with
that on dataset 1 and 3.

5) SCALABILITY
Based on our experience, classifiers need to be trained fre-
quently to adjust to the constant changing trend of the tweets
data. Therefore, in this paper, we focus on discussion of the
training time speedup of the algorithms.

According to the speedup formula introduced in subsection
‘‘Evaluation metrics’’, we define the time spent in training
using one CPU core as T1, and Tp is the time spent in
training using p CPU cores with the same data size. Then,
we calculate the speedup value S(p). Generally, S(P) < p
applies to most of the situations on parallel environment.
When S(P) = p, it implies that using pCPU cores is exactly p
times faster than using 1 CPU core with the problem size
unchanged. This is called the ideal speedup [33] or linear
speedup [22]. Whereas, when S(P) > p, it is called super-
linear speedup [22].
In Fig. 6, the speedup trends of all algorithms are presented

in three figures for a rough comparison5 and we choose the
ideal speedup as a reference benchmark to compare with the
speedup values of all algorithms.

The Fig.6-(a) compares BLR, GBM, Neural Network and
Deep Learning with the ideal speedup. It shows that deep
learning achieves a superlinear speedup depicted by the
yellow line, while the speedup trends of other algorithms all

5The deep learning algorithm was implemented using H2O which is
a Java-based platform that is different from the implementation of other
algorithms. Strictly speaking, the execution time is not comparable.

VOLUME 5, 2017 11149



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

FIGURE 6. The Scalability Comparisons of All Algorithms with Ideal
Speedup as The Benchmark, As The Number of CPU Cores Increases from
1 to 32. (a) Scalability Comparison of BLR, GBM, Neural Network and
Deep Learning with Ideal Speedup. (b) Scalability Comparison of C5.0 and
Random Forest with Ideal Speedup. (c) Scalability Comparison of kNN,
k-kNN and Naive Bayes with Ideal Speedup.

lie beneath the trend of the ideal speedup. Specifically, with
the number of CPU cores increasing from 1 to 16, there is a
steady growth in the speedup value of Deep Learning. When
the number of CPU cores doubled from 16 to 32, the speedup
value increases continuously but the growth rate slows down.

Based on the speedup trend, we could anticipate that adding
more CPU cores would still be able to substantially reduce
the training time of Deep Learning algorithm.

Compared with GBM and BLR, neural network demon-
strates a better speedup. As for their speedup trend, one can
see that GBM, BLR and neural network increase gradually
when the number of CPU cores changing from 1 to 16.
However, with more CPU cores added in, no obvious increase
is observed, implying that under current problem size, involv-
ing more computational resources would not accelerate the
training process of these algorithms.

The Fig.6-(b) compares the C5.0 and Random Forest with
the ideal speedup. It shows that there is an continuous growth
seen on the speedup trends of Random Forest and C5.0 as
represented by the gray and blue lines, when the number of
CPU cores reaches to 8. As the number hits 16, there is still a
modest growth in the speedup trends for Random Forest. But
for C5.0, the growth rate of the speedup value is slight. When
the number of CPU continues to increase to 32, there is on
obvious rise in speedup trends for both algorithms.

The similar speedup trends happen to kNN and k-kNN as
well, and there are overlaps between the trends of these two
algorithms when using less than 8 CPU cores, as demon-
strated in Fig.6-(c). Likewise, Naive Bayes also demonstrated
a similar speedup trend. The difference is that when the
number of CPU cores doubles from 16 to 32, there was a
slight increase seen in the speedup value of Naive Bayes,
indicating that there is some rooms for shortening training
process of Naive Bayes.

VII. DISCUSSION
A. OBSERVATIONS OF PERFORMANCE AND
STABILITY EVALUATION
Based on the experiment outcomes, both Random Forest and
C5.0 outperformed other algorithms in terms of detection
accuracy, the TPR/FPR and the F-measure when using the
evenly distributed datasets. Despite algorithms experienced a
significant drop in their F-measure values with the unevenly
distributed datasets, Random Forest and C5.0 still achieved
relatively high F-measure values, proving that they perform
more stably than other algorithms. Hence, in terms of predic-
tion capability, Random Forest and C5.0 are ideal candidates
for real world spam detection based on our datasets, and it is
reasonable to speculate that the tree-based algorithms could
yield moderate performance on similar datasets.

It is worth mentioning that Deep Learning also achieved
approximately 80%of accuracywhen trainedwith 200k train-
ing data. Its TPR and F-measure values were above or equal to
80%when using the evenly distributed datasets, which makes
Deep Learning algorithm stand out.

Intuitively, using more data for training helps to form a
classifier offering better performance. This has been proved
by our experiments as shown in Figs 1 and 2. However,
there are exceptions. For instance, there was no considerable
increase in accuracy for GBM, Naive Bayes and Neural
network once the size of training data reached 20k. One of

11150 VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

the possible reasons could be that when applying these algo-
rithms on our datasets, using 20k training data has provided
sufficient information for training amodel that clearly depicts
the boundaries of spams and non-spams. Therefore adding
more training samples would not further benefit the efficacy
of classification. It may have the risk of causing over-fitting.

The experiment of stability proved again that Random
Forest performed more stably than other algorithms did. This
gives an extra point for Random Forest, making it more
suitable for the real world spam detection system. Beside,
GBM and C5.0 also show stable performance under ran-
domly selection of training samples, compared with other
algorithms.

Nevertheless, the performance and stability of the algo-
rithms achieved on our datasets should serve only as a
reference. Algorithms may behave differently on different
tweets’ datasets or using different features. With careful tun-
ing the parameters of selected algorithms, their performance
can be further improved.

B. OBSERVATIONS OF SCALABILITY EVALUATION
However, when taking the real world situation into account,
both the time an algorithm spent in training and testing should
be considered. As it is demonstrated by the experiments that
for most of the selected algorithms, the more training data
used, the better detection accuracy achieved. Hence, in order
to guarantee the utility in real situation, a trade-off between
classifiers’ prediction/classification accuracy and the amount
of training samples should be made.

TABLE 6. Algorithms training/detection time on 200k training/testing
datasets using 32 CPU cores.

The training time of all algorithms on 200k datasets using
32 CPU cores is described in Table. 6. One can see that it
took the C5.0 more than 2 hours to complete the training,
while BLR only needed 3 seconds for the same problem
size. Although Random Forest has achieved more than 90%
of accuracy, it requires more than 900 seconds to finish the
training. Considering that in a scenario where the trained
classifier (or model) needs to be frequently retrained to suit
the changing pattern of the data, then C5.0 might not be an
ideal option due to its long training time. While in other
occasions where the classification accuracy is critical, then
the classifiers can be trained beforehand with a large amount
of training data. For these occasions, Random Forest and
C5.0 should be considered.

FIGURE 7. The possible speedup trend – a linear speedup.

Undeniably, the testing/detection time plays an impor-
tant role when the real-time detection capability is desired.
Despite the selected algorithms spending considerably less
time for detection compared with that in training, the detec-
tion process can still be time-consuming if the size of data is
considerable.

As shown in Table. 6, kNN took the longest time to fin-
ish detecting, which was approximate 12 minutes. On the
contrary, GBM and Neural Network only needed 1.8 and
1.2 seconds respectively. For C5.0, around 72 seconds was
required, while for the same problem size, it took Random
Forest less than half a minute. Therefore, for the applications
that demand timely detection, then the GBM algorithm can
be the preferred candidate due to its relatively high detection
accuracy (81% of the TPR using 200k training) and instant
detection time.

To boost the training and detecting process of all algo-
rithms, a straightforward way is to add more computational
resources, namely CPU cores in our scenario, to accelerate
the computation. However, our scalability experiment has
revealed that it is not always cost-effective to add more
CPU cores to accomplish real-time detection capability,
because the speedup of themajority of algorithms can achieve
is non-liner. With the number of CPU cores increasing, the
execution time will reduces continuously. But when the num-
ber of CPU cores reaches a certain number P1, there will be
no significant improvement gained no matter howmany CPU
cores are involved. (as shown in Fig. 7 which depicts a general
speedup trend of all algorithms except fro deep learning).

One of the reasons that cause this phenomena is that with
the number of CPU cores growing, the process running on
each CPU core needs to spend time synchronizing the tasks.
The other reason is related to the implement parallelism
of R-based machine learning algorithms and the doParallel
package. For example, some algorithms may not originally
design to implement parallelism, only a certain stage of the
calculation process (i.e. the for loop) can be run in parallel,
while the majority of the calculation is processed in a sequen-
tial manner. Another reason is that the CPU cores is not fully
utilized during the execution. All these possible factors hinder
the effective use of parallel computational resources.

Noticeably, deep learning achieved a superlinear speedup
on our shared-memory multi-processor workstation. Based

VOLUME 5, 2017 11151



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

on [21], superlinear speedup could happen due to reducing the
number of clocks per instruction (CPI) for memory access in
the parallel environment. There are several factors causing the
reduction of the CPI for memory access. From the perspective
of hardware, one of the factors is the shared cache provided
by our shared-memory multi-processor system. The system
is equipped with 2 physical Intel(R) Xeon(R) CPU E5-2690
v3 2.60GHz CPUs, each of which offers 12 CPU cores
(two threads per core). Within one physical CPU, 24 log-
ical CPU cores share the cache memory. According
to [21], shared-cache processors provide more efficient mem-
ory access than processors use private cache. We believe that
the deep learning speedup has benefited from the efficiency
of shared-cache as can be seen from Fig.6-(a) that when using
less than 16 CPU cores, there was a sharp increase of the
speedup trend, because all the 16 processes can be run on
one physical CPU sharing cache memory. When doubling the
number CPU cores from 16 to 32, therewas still an increase of
the speedup, but the increase rate was not as sharp as previous,
because 32 processes have to run on 2 physical CPUs which
are not sharing cache. Two groups of processes running on
2 physical CPUs have to share the main memory which is
less efficient than sharing the cache. Besides, doubling the
number of processes also increases the amount of communi-
cations which might cause extra performance overheads.

In algorithm level, deep learning implemented by H2O is
optimized for lock-free parallelization scheme, which mini-
mizes the overhead caused bymemory locking [4], [20].With
a parallelized version of stochastic gradient descent (SGD)
utilizing Hogwild! [20], the H20 platform enables processors
to have free access to shared memory, allowing processors
to update their own memory components without causing
overwrites. Hence, no locking is needed for each processor,
which greatly increases the efficiency of inter-process com-
munication, thus contributing to a better speedup.

Normally, a good scalability reflects that implementing
parallelism can significantly shorten the execution time and
indicates that there is much room for performance improve-
ment. Based on our experiment, by referring to the speedup
trends of the algorithms shown in Fig.6, we can draw a
conclusion that apart from Deep Learning, using more than
16 CPU cores is not able to significantly accelerate the train-
ing process with no more than 200k training datasets. But the
speedup trend of Deep Learning shows that it is still hungry
for computation. Using more than 32 CPU cores can still lead
to a moderate decrease in its training time, which makes real-
time training achievable by using Deep Learning.

VIII. CONCLUSION AND FUTURE WORK
In conclusion, we collected 9 mainstream machine learning
algorithms and studied them in terms of classification per-
formance, stability and scalability based on tweets datasets.
We applied these algorithms under different scenarios by
varying the volumes of training data and the ratio of spam to
non-spam to evaluate their performance of detecting Twitter
spams in terms of accuracy, the TPR/FPR and the F-measure.

We also investigated the performance stability of each algo-
rithm to understand how random sampling and variation of
testing data affect the detection performance. The outcome of
our experiment shows that Random Forest and C5.0 stood out
due to their superior detection accuracy, and Random Forest
performed more stably than other algorithms. To understand
the cost-effectiveness of selected algorithms in a parallel
environment when processing a large amount of datasets,
we examine the scalability of each algorithm using different
number of CPU cores, aiming to observe how parallel com-
putational resources impact the algorithms’ training process
and how much resource is suitable for a certain problem
size. Based on our experiment, we observed a superlinear
speedup trend achieved by Deep Learning, showing that it is
capable of effectively utilizing parallel resources and possible
to accomplish real-time training and testing tasks.

There are problemsworthy of further study in future. It will
be interesting to evaluate whether the performance of these
algorithms can be further improved by using more tweets for
training. For the scalability tests, we would like to carry out
experiments on laboratory-size computer clusters to explore
whether the algorithms such as Deep Learning and Random
Forest would achieve better scalability and performance in a
large scale of parallel environment.

REFERENCES
[1] F. Benevenuto, G. Magno, T. Rodrigues, and V. Almeida, ‘‘Detecting

spammers on Twitter,’’ in Proc. Collaboration, Electron. Messaging, Anti-
Abuse Spam Conf. (CEAS), vol. 6. 2010, p. 12.

[2] G. Biau, ‘‘Analysis of a random forests model,’’ J. Mach. Learn. Res.,
vol. 13, pp. 1063–1095, Apr. 2012.

[3] C.M. Bishop, ‘‘Pattern recognition andmachine learning,’’ NewYork, NY,
USA: Springer, 2006.

[4] A. Candel, V. Parmar, E. LeDell, and A. Arora. (Oct. 2016). Deep
Learning With H2O. [Online]. Available: http://h2o2016.wpengine.com/
wp-content/themes/h2o2016/images/resources/DeepLearningBooklet.pdf

[5] C. Chen, J. Zhang, X. Chen, Y. Xiang, and W. Zhou, ‘‘6 million spam
tweets: A large ground truth for timely Twitter spam detection,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 7065–7070.

[6] D. Conway and J. White, Machine Learning for Hackers. Newton, MA,
USA: O’Reilly Media, 2012.

[7] M. Egele, G. Stringhini, C. Kruegel, and G. Vigna, ‘‘COMPA: Detecting
compromised accounts on social networks,’’ in Proc. NDSS, 2013.

[8] J. Friedman, T. Hastie, and R. Tibshirani, ‘‘Additive logistic regression:
A statistical view of boosting,’’ Ann. Statist., vol. 28, no. 2, p. 2000, 1998.

[9] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[10] A. K. Ghosh, P. Chaudhuri, and C. A. Murthy, ‘‘On visualization and
aggregation of nearest neighbor classifiers,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 10, pp. 1592–1602, Oct. 2005.

[11] H2O.ai.H2O for Business, accessed on Sep. 29, 2016. [Online]. Available:
http://www.h2o.ai//

[12] K. Hechenbichler and K. Schliep, ‘‘Weighted K-nearest-neighbor tech-
niques and ordinal classification,’’ Ludwigs–Maximilians Univ. Munich,
Munich, Germany, Discussion Paper 399, SFB 386, 2004, p. 16

[13] M. Kuhn, ‘‘Caret package,’’ J. Statist. Softw., vol. 28, no. 5, pp. 1–26, 2008.
[14] Cran R-Project, R Project Website. (Aug. 6, 2015). A Short

Introduction to the Caret Package. [Online]. Available: https://cran.r-
project.org/web/packages/caret/vignettes/caret.pdf

[15] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[16] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
and E. Muharemagic, ‘‘Deep learning applications and challenges in big
data analytics,’’ J. Big Data, vol. 2, no. 1, p. 1, 2015.

[17] J. Oliver, P. Pajares, C. Ke, C. Chen, and Y. Xiang, ‘‘An in-depth analysis of
abuse on Twitter,’’ Trend Micro, Irving, TX, USA. Tech. Rep., Sep. 2014.

11152 VOLUME 5, 2017



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

[18] C. Pash. (Sep. 2014). The Lure of Naked Hollywood Star Photos Sent
the Internet Into Meltdown in New Zealand, accessed on Aug. 6, 2016.
[Online]. Available: http://www.businessinsider.com.au/the-lure-of-
naked-hollywood-star-photos-sent-the-internet-into-meltdown-in-new-
zealand-2014-9

[19] J. R. Quinlan.Data mining tools See5 and C5.0, accessed on Jun. 10, 2017.
[Online]. Available: http://www.rulequest.com/see5-info.html

[20] B. Recht, C. Re, S. Wright, and F. Niu, ‘‘Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 693–701.

[21] S. Ristov, R. Prodan, M. Gusev, and K. Skala, ‘‘Superlinear speedup in
HPC systems: Why and when?’’ in Proc. Federated Conf. Comput. Sci.
Inf. Syst. (FedCSIS), Jun. 2016, pp. 889–898.

[22] J. Shan, ‘‘Superlinear speedup in parallel computation,’’ CCS,
Northeastern Univ., Boston, MA, USA, Course Report, Tech. Rep., 2002.

[23] J. Song, S. Lee, and J. Kim, ‘‘Spam filtering in Twitter using sender-
receiver relationship,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detec-
tion, 2011, pp. 301–317.

[24] Statista. Number of Monthly Active Twitter Users Worldwide from 1st
Quarter 2010 to 2nd Quarter 2016 (in millions), accessed on Aug. 9, 2016.
[Online]. Available: http://www.statista.com/statistics/282087/number-of-
monthly-active-twitter-users/

[25] G. Stringhini, C. Kruegel, and G. Vigna, ‘‘Detecting spammers on social
networks,’’ in Proc. 26th Annu. Comput. Secur. Appl. Conf., 2010, pp. 1–9.

[26] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, ‘‘Design and eval-
uation of a real-time URL spam filtering service,’’ in Proc. IEEE Symp.
Secur. Privacy, Jun. 2011, pp. 447–462.

[27] C. Vecchiola, S. Pandey, and R. Buyya, ‘‘High-performance cloud comput-
ing: A view of scientific applications,’’ in Proc. 10th Int. Symp. Pervasive
Syst., Algorithms, Netw., 2009, pp. 4–16.

[28] A. H. Wang, ‘‘Don’t follow me: Spam detection in Twitter,’’ in Proc. Int.
Conf. Secur. Cryptogr. (SECRYPT), 2010, pp. 1–10.

[29] D. Wang, S. B. Navathe, L. Liu, D. Irani, A. Tamersoy, and C. Pu, ‘‘Click
traffic analysis of short URL spam on Twitter,’’ in Proc. 9th Int. Conf.
Conf. Collaborative Comput. Netw., Appl. Worksharing (Collaboratecom),
Apr. 2013, pp. 250–259.

[30] S. Weston and R. Calaway. (2015). Getting Started With
Doparallel and Foreach. [Online]. Available: https://cran.r-project.
org/web/packages/doparallel/vignettes/gettingstartedparallel. pdf

[31] C. Yang, R. Harkreader, and G. Gu, ‘‘Empirical evaluation and new design
for fighting evolving Twitter spammers,’’ IEEE Trans. Inf. Forensics Secu-
rity, vol. 8, no. 8, pp. 1280–1293, Aug. 2013.

[32] C. Yang, R. C. Harkreader, and G. Gu, ‘‘Die free or live hard? Empir-
ical evaluation and new design for fighting evolving Twitter spam-
mers,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection, 2011,
pp. 318–337.

[33] E. J. H. Yero and M. A. A. Henriques, ‘‘Speedup and scalability analysis
of master–slave applications on large heterogeneous clusters,’’ J. Parallel
Distrib. Comput., vol. 67, no. 11, pp. 1155–1167, 2007.

[34] K. Zetter, ‘‘Trick or tweet? Malware abundant in Twitter URLs,’’
Wired, 2009.

[35] X. Zhang, S. Zhu, and W. Liang, ‘‘Detecting spam and promoting cam-
paigns in the Twitter social network,’’ in Proc. IEEE 12th Int. Conf. Data
Mining, 2012, pp. 1194–1199.

[36] J. Zorbas, D. Reble, and R. VanKooten, ‘‘Measuring the scalability of
parallel computer systems,’’ in Proc. ACM/IEEE Conf. Supercomput.,
1989, pp. 832–841.

GUANJUN LIN received the bachelor’s degree in
information technology (Hons.) from Deakin Uni-
versity, Geelong, VIC, Australia, in 2012, where
he is currently pursuing the Ph.D. degree in infor-
mation technology. His current research inter-
ests include system security and social network
security.

NAN SUN received the bachelor’s degree in infor-
mation technology (Hons.) from Deakin Univer-
sity, Geelong, VIC,Australia, in 2016, where she is
currently pursuing the Ph.D. degree in information
technology. Her current research interests include
cyber security and social network security.

SURYA NEPAL received the B.E. degree from
the National Institute of Technology, Surat, India,
the M.E. degree from the Asian Institute of Tech-
nology, Bangkok, Thailand, and the Ph.D. degree
from RMITUniversity, Australia. He is a Principal
Research Scientist with CSIRO Data61. He has
authored or co-authored over 150 publications to
his credit. At CSIRO, he undertook research in the
area of multimedia databases, web services and
service oriented architectures, social networks,

security, privacy and trust in collaborative environment and cloud systems
and big data. His main research interest includes the development and
implementation of technologies in the area of distributed systems and social
networks, with a specific focus on security, privacy, and trust. Many of his
works are published in top international journals and conferences, such as
VLDB, ICDE, ICWS, SCC, CoopIS, ICSOC, the International Journal of
Web Services Research, the IEEE TRANSACTIONS ON SERVICE COMPUTING, ACM
Computing Survey, and ACM Transaction on Internet Technology.

JUN ZHANG (M’12) received the Ph.D. degree
from the University of Wollongong, Australia,
in 2011. He leads a Research and Development
Team, where he was involved in cyber security, big
data analytics, and image privacy. He is currently
a Senior Lecturer with the School of Informa-
tion Technology, Deakin University. He is also the
HDR coordinator and a Research Theme Leader
with the Deakin SRC Centre for Cyber Secu-
rity Research. He has authored or co-authored

over 70 research papers in refereed international journals and conferences.
He received the 2009 Chinese Government Award for Outstanding Student
Abroad.

VOLUME 5, 2017 11153



G. Lin et al.: Statistical Twitter Spam Detection Demystified: Performance, Stability and Scalability

YANG XIANG (A’08–M’09–SM’12) received the
Ph.D. degree in computer science from Deakin
University, Australia. In particular, he is cur-
rently leading his team developing active defense
systems against large-scale distributed network
attacks. He is the Chief Investigator of several
projects in network and system security, funded by
the Australian Research Council. He is the Direc-
tor of the Centre for Cyber Security Research,
Deakin University. He has authored or co-authored

two books and over 200 research papers in many international journals and
conferences. His current research interests include network and system secu-
rity, data analytics, distributed systems, and networking. He has served as the
Program/General Chair for many international conferences and he has been
the PC member for over 60 international conferences in distributed sys-
tems, networking, and security. He serves as an Associate Editor of the
IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, and Security and Communication Networks (Wiley),
and an Editor of the Journal of Network and Computer Applications. He is
the Coordinator, Asia for IEEE Computer Society Technical Committee on
Distributed Processing.

HOUCINE HASSAN received the M.S. and Ph.D.
degrees in computer engineering from the Uni-
versitat Politècnica de València, Spain, in 1993
and 2001, respectively. He has been an Asso-
ciate Professor with the Department of Computer
Engineering, Universitat Politècnica de València,
since 1994. His research interests focus on several
aspects of the development of embedded systems,
real-time systems, computer architecture, big data,
and Internet of Things. He has participated in

about 33 competitive funded research projects; he is the co-author of ten
books related to Computer Architecture and Embedded Systems and has
authored or co-authored about 130 papers in international refereed confer-
ences and journals. He is member of the IEEE SMC Technical Committee
on Cybermatics. He has served as Program/Organization Chair of about
40 conferences of the IEEE, ACM, and IFIP. He has participated as TPC
member of over 200 refereed conferences. He has been an Editor/Managing
Guest Editor of a number of Elsevier, Springer, and IEEE journals, such as
JPDC, FGCS, JSA or CCPE.

11154 VOLUME 5, 2017


